AIPHAProcessing
- class AIPHAProcessing.AIPHAProcessing(client, processing_folder='processing', worker_instance_type='P2', manager_instance_type='small')
- Bases: - object- AIPHAProcessing class for data processing with AIPHA API. - create_operator_from_path(path, extension='', is_folder_level='__auto__')
- Create an “operator” pointing to a path. - Parameters:
- path – path to file or folder 
- extension – extension of file 
- is_folder_level – if True, the operator will be executed massive parallel for each file in a folder level, if False, the operator will be executed on file level, if ‘__auto__’, the operator will be executed on folder level if the path is a folder, otherwise on file level 
 
 
 - execute()
- Execute the call stack. 
 - class fvo(outer_class)
- Bases: - object- Namespace for fvo functions. - align_top(input_path='__auto__', target_path='__auto__', output_path='__auto__', extension_input_file='.laz', extension_target_file='.laz', extension_output_file='.laz', folder_parallel_processing='__auto__')
- Zero centering of XYZ points in a LAZ file - Parameters:
- input_path – input LAZ folder folder 
- target_path – input LAZ folder folder 
- output_path – output LAZ folder folder 
 
 
 - connect_neighbouring_vertices_unassigned(input_path='__auto__', input_vertices='vertices.laz', output_path='__auto__', max_line_distance=0.5, max_line_distance_corner=0.23, min_samples=3, extension_input_file='.laz', extension_output_file='.dxf', folder_parallel_processing='__auto__')
- Connect neighbouring vertices in a point cloud - Parameters:
- input_path – Input folder with all 3D points 
- input_vertices – Input vertices 
- output_path – Output model 
- max_line_distance – Maximum distance between line and points to be considered as inlier 
- max_line_distance_corner – Maximum distance between vertices and points to be considered as inlier 
- min_samples – Minimum number of points to fit a line 
 
 
 - estimate_vobject_coordinates(path_source_in='__auto__', path_trafo_out='__auto__', path_source_out='__auto__', extension_file_source_in='.laz', extension_file_trafo_out='.txt', extension_file_source_out='.laz', folder_parallel_processing='__auto__')
- estimate vobject coordinates - Parameters:
- path_source_in – input folder data 
- path_trafo_out – output trafo 
- path_source_out – output folder data 
 
 
 - evaluate_model(data_is='is.laz', model_is='is.dxf', model_target='__auto__', vertex_target_distance=0.5, extension_model_target='.dxf', folder_parallel_processing='__auto__')
- Compare two 3D models - Parameters:
- data_is – input file 
- model_is – input file 
- model_target – output folder 
- vertex_target_distance – Distance threshold for corner point suppression. 
 
 
 - export_vertices(in_path='__auto__', out_path='__auto__', extension_in_file='.laz', extension_out_file='.dxf', folder_parallel_processing='__auto__')
- Export a 3D model from a point cloud - Parameters:
- in_path – input folder with edges encoded in the intensity field. 
- out_path – output folder 
 
 
 - filter_valid_vertices(input_path='__auto__', input_path2='__auto__', input_path_features='__auto__', output_path='__auto__', output_path_features='__auto__', min_distance=0.0, max_distance=100, extension_input_file='.laz', extension_input_file2='.laz', extension_input_file_features='.npy', extension_output_file='.laz', extension_output_file_features='.npy', folder_parallel_processing='__auto__')
- Filter valid vertices from a DXF file. - Parameters:
- input_path – Input laz or txt folder to filter. 
- input_path2 – Input laz or txt folder as reference. 
- input_path_features – Input features folder. 
- output_path – Output laz or txt folder. 
- output_path_features – Output features folder. 
- min_distance – Minimum distance. 
- max_distance – Maximum distance. 
 
 
 - import_vertices(in_path='__auto__', layer='-1', out_path='__auto__', extension_in_file='.dxf', extension_out_file='.laz', folder_parallel_processing='__auto__')
- Extract visible face3d vertices from a DXF file. - Parameters:
- in_path – Input DXF folder folder 
- layer – Layer names as comma-separated list 
- out_path – Output folder folder 
 
 
 - likelihood(input_path='__auto__', points_path='__auto__', output_path='__auto__', max_distance=0.5, missing_distance=1.5, missing_knn=2, extension_input_file='.laz', extension_points_file='.laz', extension_output_file='.laz', folder_parallel_processing='__auto__')
- Compute class conditional probability distribution - Parameters:
- input_path – input LAZ folder folder 
- points_path – input LAZ folder folder 
- output_path – output LAZ folder folder 
- max_distance – probability max distance 
- missing_distance – interpolate missing points distance 
- missing_knn – interpolate number missing neighbours 
 
 
 - model_swap_axis(input_path='__auto__', output_path='__auto__', extension_input_file='.dxf', extension_output_file='.dxf', folder_parallel_processing='__auto__')
- model swap axis - Parameters:
- input_path – input dxf folder folder 
- output_path – output dxf folder folder 
 
 
 - optimize_model_graph(in_dxf_path='__auto__', in_point_cloud_path='__auto__', out_dxf_path='__auto__', max_distance=0.35, num_iterations=4, extension_in_dxf_file='.dxf', extension_in_point_cloud_file='.laz', extension_out_dxf_file='.dxf', folder_parallel_processing='__auto__')
- Optimize the graph of a 3D model. - Parameters:
- in_dxf_path – input folder 
- in_point_cloud_path – input folder 
- out_dxf_path – output folder 
- max_distance – Maximum distance between a point and a graph node for the point to be considered a candidate for merging with the graph node. 
- num_iterations – Number of iterations to run the optimization. 
 
 
 - simplify_model(in_path='__auto__', out_path='__auto__', layers='1', distance=0.25, extension_in_file='.dxf', extension_out_file='.dxf', folder_parallel_processing='__auto__')
- Simplify a 3D model - Parameters:
- in_path – input folder 
- out_path – output folder 
- layers – layers to be processed 
- distance – Distance threshold for corner point suppression. 
 
 
 - zero_centering(input_path='__auto__', output_path='__auto__', extension_input_file='.laz', extension_output_file='.laz', folder_parallel_processing='__auto__')
- Zero centering of XYZ points in a LAZ file - Parameters:
- input_path – input LAZ folder folder 
- output_path – output LAZ folder folder 
 
 
 
 - class image(outer_class)
- Bases: - object- Namespace for image functions. - assign_georeference(georeferenced_path='__auto__', unreferenced_path='__auto__', output_path='__auto__', extension_georeferenced_file='.tif', extension_unreferenced_file='.tif', extension_output_file='.tif', folder_parallel_processing='__auto__')
- Assign georeference from a georeferenced image to an unreferenced image. - Parameters:
- georeferenced_path – Georeferenced image folder 
- unreferenced_path – Unreferenced image folder 
- output_path – Output georeferenced image folder 
 
 
 - canny_edge_detection(input_path='__auto__', output_path='__auto__', sigma=1.0, low_threshold=0.1, high_threshold=0.2, values_subset='', extension_input_file='.tif', extension_output_file='.tif', folder_parallel_processing='__auto__')
- Perform Canny edge detection on a georeferenced image and save the detected edges as a raster. - Parameters:
- input_path – Input image folder 
- output_path – Output edge raster folder 
- sigma – Standard deviation of the Gaussian filter 
- low_threshold – Low threshold for hysteresis 
- high_threshold – High threshold for hysteresis 
- values_subset – Subset of values to extract contours from, all values by default 
 
 
 - extract_contours(input_path='__auto__', value=0.5, output_path='__auto__', values_subset='', extension_input_file='.tif', extension_output_file='.shp', folder_parallel_processing='__auto__')
- Extract contours from a georeferenced image and save them as a shapefile. - Parameters:
- input_path – Input georeferenced image folder 
- value – Contour value 
- output_path – Output shapefolder 
- values_subset – Subset of contour values, default is all values 
 
 
 - image_metadata(input_path='__auto__', output_path='__auto__', extension_input_file='.tif', extension_output_file='.json', folder_parallel_processing='__auto__')
- Obtain metadata of a georeferenced image and save it as a JSON file. - Parameters:
- input_path – Input georeferenced image folder 
- output_path – Output JSON folder 
 
 
 - image_to_matrix(input_path='__auto__', output_path='__auto__', extension_input_file='.tif', extension_output_file='.npy', folder_parallel_processing='__auto__')
- Convert an image to a matrix. - Parameters:
- input_path – Input image folder 
- output_path – Output matrix folder (either .npy or .txt) 
 
 
 - matrix_to_image(input_path='__auto__', output_path='__auto__', data_type='uint8', extension_input_file='.npy', extension_output_file='.tif', folder_parallel_processing='__auto__')
- Convert a matrix to an image. - Parameters:
- input_path – Input matrix folder (either .npy or .txt) 
- output_path – Output image folder 
- data_type – Data type of the output image 
 
 
 - polygon_to_image(geotiff_path='__auto__', pickle_path='__auto__', output_path='__auto__', extension_geotiff_file='.tif', extension_pickle_file='.pickle', extension_output_file='.tif', folder_parallel_processing='__auto__')
- Generate an image of a multipolygon filled inside. - Parameters:
- geotiff_path – Geotiff folder with size and resolution information 
- pickle_path – Pickle folder containing the Shapely polygon 
- output_path – Output georeferenced TIFF image 
 
 
 - resize_image(input_path='__auto__', output_path='__auto__', new_grid_size=1.0, compression='None', extension_input_file='.tif', extension_output_file='.tif', folder_parallel_processing='__auto__')
- resize image - Parameters:
- input_path – Input georeferenced image folder 
- output_path – Output georeferenced image folder 
- new_grid_size – New grid size in meters 
- compression – Compression method (e.g., deflate, lzw) 
 
 
 - retile_images(path_reference='.', path_to_retile='.', output_path='out1', extension_ref='.tif', extension_ret='.tif', folder_parallel_processing='__auto__')
- retile images - Parameters:
- path_reference – Reference folder with image dimensions and geolocations that should be used for retiling 
- path_to_retile – Folder with images that should be retiled to match reference 
- output_path – Folder with retiled images 
- extension_ref – file extension 
- extension_ret – file extension 
 
 
 
 - class ml3d(outer_class)
- Bases: - object- Namespace for ml3d functions. - evaluate_semantic_segmentation(prediction_path='__auto__', ground_truth_path='__auto__', class_names='1,2,3,4', invalid_label=0, extension_prediction_path='.labels', extension_ground_truth_path='.labels', folder_parallel_processing='__auto__')
- Evaluate semantic segmentation - Parameters:
- prediction_path – Path to prediction folder or folder 
- ground_truth_path – Path to ground truth folder or folder 
- class_names – class names 
- invalid_label – Invalid label 
 
 
 - knn_classification(in_path_to_points='__auto__', in_path_from_points='__auto__', out_path_labels='__auto__', out_path_probs='__auto__', k=3, max_distance=1.0, to_points_names='X,Y,Z', from_point_names='X,Y,Z', from_class_name='classification', extension_in_path_to_points='.laz', extension_in_path_from_points='.laz', extension_out_path_labels='.labels', extension_out_path_probs='.npy', folder_parallel_processing='__auto__')
- knn classification - Parameters:
- in_path_to_points – input point cloud to be labeled 
- in_path_from_points – input reference point cloud 
- out_path_labels – out class labels 
- out_path_probs – out class probabilities 
- k – number of neighbors 
- max_distance – maximum distance 
- to_points_names – names of points to be labeled 
- from_point_names – names of reference points 
- from_class_name – name of reference classification 
 
 
 - knn_probabilistic_classification(in_path_to_points='__auto__', in_path_from_points='__auto__', in_path_from_probs='__auto__', out_path_labels='__auto__', out_path_probs='__auto__', k=3, max_distance=1.0, to_points_names='X,Y,Z', from_point_names='X,Y,Z', from_class_name='classification', extension_in_path_to_points='.laz', extension_in_path_from_points='.laz', extension_in_path_from_probs='.npy', extension_out_path_labels='.labels', extension_out_path_probs='.npy', folder_parallel_processing='__auto__')
- knn probabilistic classification - Parameters:
- in_path_to_points – input point cloud to be labeled 
- in_path_from_points – input reference point cloud 
- in_path_from_probs – input reference class probabilities 
- out_path_labels – out class labels 
- out_path_probs – out class probabilities 
- k – number of neighbors 
- max_distance – maximum distance 
- to_points_names – names of points to be labeled 
- from_point_names – names of reference points 
- from_class_name – name of reference classification 
 
 
 - regression_inference(in_path_points='data_train/points', out_path_predictions='data_train/predictions', in_model_path='parameters_model', folder_parallel_processing='__auto__')
- regression inference - Parameters:
- in_path_points – input directory with training data 
- out_path_predictions – output directory with predictions 
- in_model_path – model path 
 
 
 - regression_training(in_path_points='data_train/points', in_path_gt='data_train/gt', out_model_path='parameters_model', voxel_size=0.02, zero_centering='True', point_names='X,Y,Z', feature_names='ones', learning_rate=3e-06, weight_decay=1e-09, num_epochs=500, batch_size=2, save_after_epochs=100, network_type='FCNN128', criterion_type='L1Mean', num_classes=1, folder_parallel_processing='__auto__')
- regression training - Parameters:
- in_path_points – input directory with training data 
- in_path_gt – input directory with training data 
- out_model_path – model path 
- voxel_size – voxel size 
- zero_centering – zero centering 
- point_names – point names 
- feature_names – feature names 
- learning_rate – learning rate 
- weight_decay – regularization decay 
- num_epochs – number of epochs 
- batch_size – batch size for training 
- save_after_epochs – save after epochs 
- network_type – model type of backbone network 
- criterion_type – model type of criterion 
- num_classes – number of classes 
 
 
 - semantic_inference_pt_v2m2(data_in_path='__auto__', in_model_parameters_path='trained_model/model_ptv2m2', out_label_path='__auto__', out_probability_path='__auto__', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='X,Y,Z', label_name='classification', resolution=0.05, number_of_votes=5, encoding_channels='60,120,240,256', encoding_groups='12,24,48,64', decoding_channels='30,60,120,144', decoding_groups='6,12,24,48', extension_data_in_path='.laz', extension_out_label_path='.labels', extension_out_probability_path='.npy', folder_parallel_processing='__auto__')
- PT v2m2 Inference - Parameters:
- data_in_path – folder that contains the test data 
- in_model_parameters_path – path to model 
- out_label_path – folder that contains the results 
- out_probability_path – folder that contains the results 
- class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points. 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
- label_name – label name for (las/laz) 
- resolution – resolution of the subsampled point cloud 
- number_of_votes – number of votes 
- encoding_channels – comma separated list of layer sizes 
- encoding_groups – comma separated list of layer sizes 
- decoding_channels – comma separated list of layer sizes 
- decoding_groups – comma separated list of layer sizes 
 
 
 - semantic_inference_pt_v3m1(data_in_path='__auto__', in_model_parameters_path='trained_model/model_ptv2m2', out_label_path='__auto__', out_probability_path='__auto__', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='X,Y,Z', label_name='classification', resolution=0.05, number_of_votes=5, extension_data_in_path='.laz', extension_out_label_path='.labels', extension_out_probability_path='.npy', folder_parallel_processing='__auto__')
- PT v3m1 Inference - Parameters:
- data_in_path – folder that contains the test data 
- in_model_parameters_path – path to model 
- out_label_path – folder that contains the results 
- out_probability_path – folder that contains the results 
- class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points. 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
- label_name – label name for (las/laz) 
- resolution – resolution of the subsampled point cloud 
- number_of_votes – number of votes 
 
 
 - semantic_inference_rfcr(data_in_path='__auto__', results_labels_path='__auto__', results_probabilities_path='__auto__', in_model_parameters_path='results/Log_2022-11-10_11-42-05', number_of_votes=5, feature_names='red,green,blue', point_names='x,y,z', extension_data_in_path='.laz', extension_results_labels_path='.labels', extension_results_probabilities_path='.npy', folder_parallel_processing='__auto__')
- semantic inference rfcr - Parameters:
- data_in_path – folder to data 
- results_labels_path – folder to labels 
- results_probabilities_path – folder to probabilities 
- in_model_parameters_path – path to model 
- number_of_votes – number of votes to vote for a class 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
 
 
 - semantic_inference_scf(data_in_path='__auto__', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='x,y,z', label_name='classification', feature_dimensions='12,48,96,192,384', batch_size=2, results_labels_path='__auto__', in_model_parameters_path='results/Log_2022-11-10_11-42-05', results_probabilities_path='__auto__', number_of_votes=5, extension_data_in_path='.laz', extension_results_labels_path='.labels', extension_results_probabilities_path='.npy', folder_parallel_processing='__auto__')
- semantic inference scf - Parameters:
- data_in_path – folder to folder that contains the training data 
- class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points. 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
- label_name – label name for (las/laz) 
- feature_dimensions – feature dimensions 
- batch_size – batch_size 
- results_labels_path – folder to labels 
- in_model_parameters_path – path to model 
- results_probabilities_path – folder to probabilities 
- number_of_votes – number of votes to vote for a class 
 
 
 - semantic_inference_spunet(data_in_path='__auto__', in_model_parameters_path='trained_model/model_1', out_label_path='__auto__', out_probability_path='__auto__', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='X,Y,Z', label_name='classification', resolution=0.05, channels='32,64,128,256,256,128,96,96', layers='2,3,4,6,2,2,2,2', number_of_votes=5, extension_data_in_path='.laz', extension_out_label_path='.labels', extension_out_probability_path='.npy', folder_parallel_processing='__auto__')
- Spunet Inference - Parameters:
- data_in_path – folder that contains the test data 
- in_model_parameters_path – path to model 
- out_label_path – folder that contains the results 
- out_probability_path – folder that contains the results 
- class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points. 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
- label_name – label name for (las/laz) 
- resolution – resolution of the subsampled point cloud 
- channels – comma separated list of channels 
- layers – comma separated list of layers 
- number_of_votes – number of votes 
 
 
 - semantic_training_pt_v2m2(data_in_path='__auto__', out_model_parameters_path='trained_model/model_ptv2m2', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='X,Y,Z', label_name='classification', resolution=0.05, max_epochs=500, learning_rate=0.01, batch_size=10, final_div_factor=100, div_factor=10, weight_decay=0.005, encoding_channels='60,120,240,256', encoding_groups='12,24,48,64', decoding_channels='30,60,120,144', decoding_groups='6,12,24,48', extension_data_in_path='', folder_parallel_processing='__auto__')
- Pt v2m2 Training - Parameters:
- data_in_path – folder to folder that contains the training data 
- out_model_parameters_path – path to model 
- class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points. 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
- label_name – label name for (las/laz) 
- resolution – resolution of the subsampled point cloud 
- max_epochs – maximum number of epochs 
- learning_rate – learning rate 
- batch_size – batch size 
- final_div_factor – final div factor for learning rate 
- div_factor – div factor for learning rate 
- weight_decay – weight decay 
- encoding_channels – comma separated list of layer sizes 
- encoding_groups – comma separated list of layer sizes 
- decoding_channels – comma separated list of layer sizes 
- decoding_groups – comma separated list of layer sizes 
 
 
 - semantic_training_pt_v3m1(data_in_path='__auto__', out_model_parameters_path='trained_model/model_ptv2m2', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='X,Y,Z', label_name='classification', resolution=0.05, max_epochs=500, learning_rate=0.01, batch_size=10, final_div_factor=100, div_factor=10, weight_decay=0.005, extension_data_in_path='', folder_parallel_processing='__auto__')
- Pt v3m1 Training - Parameters:
- data_in_path – folder to folder that contains the training data 
- out_model_parameters_path – path to model 
- class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points. 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
- label_name – label name for (las/laz) 
- resolution – resolution of the subsampled point cloud 
- max_epochs – maximum number of epochs 
- learning_rate – learning rate 
- batch_size – batch size 
- final_div_factor – final div factor for learning rate 
- div_factor – div factor for learning rate 
- weight_decay – weight decay 
 
 
 - semantic_training_rfcr(data_in_path='__auto__', out_model_parameters_path='trained_model/model_1', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='x,y,z', label_name='classification', resolution=0.06, max_epochs=500, learning_rate=0.01, batch_size=10, learning_rate_decay=0.1, learning_momentum=0.98, learning_gradient_clip_norm=100, first_features_dim=128, extension_data_in_path='', folder_parallel_processing='__auto__')
- semantic training rfcr - Parameters:
- data_in_path – folder to folder that contains the training data 
- out_model_parameters_path – path to model 
- class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points. 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
- label_name – label name for (las/laz) 
- resolution – resolution of the subsampled point cloud 
- max_epochs – maximum number of epochs 
- learning_rate – learning rate 
- batch_size – batch size 
- learning_rate_decay – learning rate decay 
- learning_momentum – learning momentum 
- learning_gradient_clip_norm – learning gradient clip threshold 
- first_features_dim – first features dimension 
 
 
 - semantic_training_scf(data_in_path='__auto__', out_model_parameters_path='trained_model/model_1', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='x,y,z', label_name='classification', max_epochs=500, learning_rate=0.01, learning_rate_decay=0.95, feature_dimensions='16,64,128,256,512', batch_size=2, extension_data_in_path='', folder_parallel_processing='__auto__')
- semantic training scf - Parameters:
- data_in_path – folder to folder that contains the training data 
- out_model_parameters_path – path to model 
- class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points. 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
- label_name – label name for (las/laz) 
- max_epochs – maximum number of epochs 
- learning_rate – learning rate 
- learning_rate_decay – learning rate decay 
- feature_dimensions – feature dimensions 
- batch_size – batch_size 
 
 
 - semantic_training_spunet(data_in_path='__auto__', out_model_parameters_path='trained_model/model_1', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='X,Y,Z', label_name='classification', resolution=0.05, max_epochs=500, learning_rate=0.01, batch_size=10, final_div_factor=100, div_factor=10, weight_decay=0.005, channels='32,64,128,256,256,128,96,96', layers='2,3,4,6,2,2,2,2', extension_data_in_path='', folder_parallel_processing='__auto__')
- Spunet Training - Parameters:
- data_in_path – folder to folder that contains the training data 
- out_model_parameters_path – path to model 
- class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points. 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
- label_name – label name for (las/laz) 
- resolution – resolution of the subsampled point cloud 
- max_epochs – maximum number of epochs 
- learning_rate – learning rate 
- batch_size – batch size 
- final_div_factor – final div factor for learning rate 
- div_factor – div factor for learning rate 
- weight_decay – weight decay 
- channels – comma separated list of channels 
- layers – comma separated list of layers 
 
 
 - universal_inference(in_paths='__auto__', out_paths='__auto__', in_model_path='parameters_model', extension_in_files='', extension_out_files='', folder_parallel_processing='__auto__')
- universal inference - Parameters:
- in_paths – input folders with training data 
- out_paths – output folders with training data 
- in_model_path – model path 
 
 
 - universal_training(in_path='data_train', out_model_path='parameters_model_test', voxel_size=0.02, zero_centering='True', point_names='X,Y,Z', feature_names='', label_names='classification', num_classes=1, label_scales='0.01', learning_rate=3e-06, learning_decay=0.9999, num_epochs=200000, regularization_decay=1e-09, batch_size=2, save_after_epochs=100, backbone_type='MinkUNet14A', head_type='HeadPointwise', criterion_type='L1Sum', probabilistic='True', hidden_layers=8, store_in_memory='True', folder_parallel_processing='__auto__')
- universal training - Parameters:
- in_path – input directory with training data 
- out_model_path – model path 
- voxel_size – voxel size 
- zero_centering – zero centering 
- point_names – point names 
- feature_names – feature names 
- label_names – label names 
- num_classes – number of classes 
- label_scales – label scales 
- learning_rate – learning rate 
- learning_decay – learning rate decay 
- num_epochs – number of epochs 
- regularization_decay – regularization decay 
- batch_size – batch size for training 
- save_after_epochs – save after epochs 
- backbone_type – model type of backbone network 
- head_type – model type of head network 
- criterion_type – model type of criterion 
- probabilistic – estimate probabilities: labels in [0,1] 
- hidden_layers – number of hidden layers 
- store_in_memory – store training data in memory 
 
 
 - vertices_estimation_inference(in_paths='__auto__', out_paths='__auto__', in_model_path='parameters_model_test', batch_size=1, extension_in_files='', extension_out_files='', folder_parallel_processing='__auto__')
- vertices estimation inference - Parameters:
- in_paths – input folders or directory with training data 
- out_paths – output folders containing the vertices 
- in_model_path – model path 
- batch_size – batch size for training 
 
 
 - vertices_estimation_training(in_path='data_train', in_vertices_path='data_train_vertices', out_model_path='parameters_model_test', voxel_size=0.02, zero_centering='True', point_names='X,Y,Z', feature_names='', label_names='classification', num_classes=1, label_scales='0.01', learning_rate=1e-05, learning_decay=0.999, num_epochs=2000000, regularization_decay=1e-09, batch_size=5, save_after_epochs=100, backbone_type='MinkUNet14A', head_type_prob='HeadPointwise', criterion_type_prob='BCEMean', hidden_layers=8, max_interpolation_distance=0.75, dist_threshold=0.35, score_threshold=0.4, point_estimation_layers=3, point_estimation_channels=8, criterion_type_point='L1Mean', weight_pred=1.0, weight_prob=2.0, weight_reconstruction=4.0, probabilistic='True', folder_parallel_processing='__auto__')
- vertices estimation training - Parameters:
- in_path – input directory with training data 
- in_vertices_path – input directory with corresponding vertex data 
- out_model_path – model path 
- voxel_size – voxel size 
- zero_centering – zero centering 
- point_names – point names 
- feature_names – feature names 
- label_names – label names 
- num_classes – number of classes 
- label_scales – label scales 
- learning_rate – learning rate 
- learning_decay – learning rate decay 
- num_epochs – number of epochs 
- regularization_decay – regularization decay 
- batch_size – batch size for training 
- save_after_epochs – save after epochs 
- backbone_type – model type of backbone network 
- head_type_prob – model type of head network 
- criterion_type_prob – model type of criterion 
- hidden_layers – number of hidden layers 
- max_interpolation_distance – maximum distance to interpolate occluded points 
- dist_threshold – distance threshold for non-maximum suppression 
- score_threshold – score threshold for non-maximum suppression 
- point_estimation_layers – number of hidden layers for point estimation 
- point_estimation_channels – number of channels for point estimation 
- criterion_type_point – model type of criterion for point estimation 
- weight_pred – weight for point estimation 
- weight_prob – weight for probability estimation 
- weight_reconstruction – weight for reconstruction estimation 
- probabilistic – probabilistic 
 
 
 - wireframe_estimation_inference(in_paths='__auto__', out_result_paths='__auto__', in_model_path='parameters_wireframe', knn_line=15, mode_wireframe_estimation='knn unassigned', num_votes=10, rotation_axis='z', extension_in_files='', extension_out_result_files='', folder_parallel_processing='__auto__')
- [hidden] Wireframe estimation inference - Parameters:
- in_paths – input folders or directory with training data 
- out_result_paths – output folders containing the wireframes 
- in_model_path – model path 
- knn_line – knn line 
- mode_wireframe_estimation – mode for wireframe estimation 
- num_votes – number of votes for wireframe estimation 
- rotation_axis – rotation axis 
 
 
 - wireframe_estimation_training(in_path='data_train', in_wireframe_path='data_train_wireframe', out_model_path='parameters_wireframe_14A_bce_interpolation', voxel_size=0.02, zero_centering='True', point_names='X,Y,Z', feature_names='', label_names='classification', num_classes=1, label_scales='0.01', learning_rate=5e-06, learning_decay=0.999, num_epochs=2000000, regularization_decay=1e-10, batch_size=5, save_after_epochs=1, backbone_type='MinkUNet14A', head_type_prob='HeadPointwise', criterion_type_prob='BCEMean', hidden_layers=8, max_interpolation_distance=0.75, dist_threshold=0.35, score_threshold=0.5, point_estimation_layers=3, point_estimation_channels=32, criterion_type_point='L1Mean', wireframe_criterion_type='BCEMean', wireframe_estimation_layers=3, wireframe_estimation_channels=32, weight_pred=2, weight_prob=6.5, weight_reconstruction=4.5, weight_wireframe=9, knn_line=10, distance_line=0.3, probabilistic='True', store_in_memory='True', mode_wireframe_estimation='knn', maximum_wireframe_samples=2500, wireframe_subsampling=5, wireframe_extrapolation_sampling=2, only_train_wireframe='False', folder_parallel_processing='__auto__')
- [hidden] wireframe estimation training - Parameters:
- in_path – input directory with training data 
- in_wireframe_path – input directory with corresponding wireframe data 
- out_model_path – model path 
- voxel_size – voxel size 
- zero_centering – zero centering 
- point_names – point names 
- feature_names – feature names 
- label_names – label names 
- num_classes – number of classes 
- label_scales – label scales 
- learning_rate – learning rate 
- learning_decay – learning rate decay 
- num_epochs – number of epochs 
- regularization_decay – regularization decay 
- batch_size – batch size for training 
- save_after_epochs – save after epochs 
- backbone_type – model type of backbone network 
- head_type_prob – model type of head network 
- criterion_type_prob – model type of criterion 
- hidden_layers – number of hidden layers 
- max_interpolation_distance – maximum distance to interpolate occluded points 
- dist_threshold – distance threshold for non-maxima suppression 
- score_threshold – score threshold for non-maxima suppression 
- point_estimation_layers – number of hidden layers for point estimation 
- point_estimation_channels – number of channels for point estimation 
- criterion_type_point – model type of criterion for point estimation 
- wireframe_criterion_type – model type of criterion for wireframe estimation 
- wireframe_estimation_layers – number of hidden layers for wireframe estimation 
- wireframe_estimation_channels – number of channels for wireframe estimation 
- weight_pred – weight for point estimation 
- weight_prob – weight for probability estimation 
- weight_reconstruction – weight for reconstruction 
- weight_wireframe – weight for wireframe estimation 
- knn_line – number of nearest neighbours for line estimation 
- distance_line – distance threshold for line estimation 
- probabilistic – probabilistic 
- store_in_memory – store in memory 
- mode_wireframe_estimation – wireframe mode 
- maximum_wireframe_samples – maximum number of wireframe samples 
- wireframe_subsampling – wireframe subsampling factor 
- wireframe_extrapolation_sampling – wireframe extrapolation sampling factor 
- only_train_wireframe – only train wireframe 
 
 
 
 - class ops3d(outer_class)
- Bases: - object- Namespace for ops3d functions. - align_points(path_source_in='segmented_object', path_transformation_in='transformations', path_source_out='aligned_points', folder_parallel_processing='__auto__')
- align points - Parameters:
- path_source_in – input folder data 
- path_transformation_in – input folder transformation 
- path_source_out – output folder 
 
 
 - assign_point_labels(path_source_in='__auto__', path_labels_in='__auto__', path_source_out='__auto__', dtype='classification', all_type='', extension_file_source_in='.laz', extension_file_labels_in='.npy', extension_file_source_out='.laz', folder_parallel_processing='__auto__')
- assign point labels - Parameters:
- path_source_in – input folder data 
- path_labels_in – input folder labels 
- path_source_out – output folder 
- dtype – value 
- all_type – values to load 
 
 
 - crop_and_merge_polygons(point_cloud_paths='__auto__', polygon_path='__auto__', output_path='__auto__', extension_point_cloud_files='.laz', extension_polygon_file='.pickle', extension_output_file='.laz', folder_parallel_processing='__auto__')
- crop and merge polygons - Parameters:
- point_cloud_paths – Input folder folder for the point clouds 
- polygon_path – Input folder folder for the polygon (pickle) 
- output_path – Output folder folder for the cropped point cloud 
 
 
 - crop_circle(in_path='__auto__', out_path='__auto__', latitude=1, longitude=1, lat_lon_path='__auto__', radius=75, cols='', max_num_processes=0, extension_in_file='.laz', extension_out_file='.laz', extension_lat_lon_file='.laz', folder_parallel_processing='__auto__')
- crop circle - Parameters:
- in_path – input folder 
- out_path – output folder 
- latitude – latitude 
- longitude – longitude 
- lat_lon_path – (optional) folder with lat lon coordinates 
- radius – radius for cropping 
- cols – columns to be used, leave empty for all 
- max_num_processes – maximum number of processes 
 
 
 - crop_points_to_polygon(in_points_path='__auto__', in_polygon_path='__auto__', out_path='__auto__', cols_in='', extension_in_points_file='.laz', extension_in_polygon_file='.pickle', extension_out_file='.laz', folder_parallel_processing='__auto__')
- crop points to polygon - Parameters:
- in_points_path – Input folder folder for the point cloud 
- in_polygon_path – Input folder folder for the polygon (pickle) 
- out_path – Output folder folder for the cropped point cloud 
- cols_in – columns to load 
 
 
 - crop_to_equal_value_range(path1_in='segmented_object1', path2_in='segmented_object2', path1_out='crop_relative_height1', path2_out='crop_relative_height2', reference='max', axis=2, max_num_processes=0, folder_parallel_processing='__auto__')
- crop to equal value range - Parameters:
- path1_in – input folder 
- path2_in – input folder 
- path1_out – output folder 
- path2_out – output folder 
- reference – [max, min, same]: same value range relative to maximum point [max], relative to minimum point [min] or absolute coordinates [same] 
- axis – axis to crop values 
- max_num_processes – Number of parallel processes 
 
 
 - density_based_clustering(pathname='__auto__', cluster_id_pathname='__auto__', cluster_centers_pathname='__auto__', wireframe_pathname='__auto__', epsilon=0.25, min_samples=0, dim=3, wireframe='False', extension_filename='.laz', extension_cluster_id_filename='.npy', extension_cluster_centers_filename='.laz', extension_wireframe_filename='.npy', folder_parallel_processing='__auto__')
- Density-based Point Cloud Clustering - Parameters:
- pathname – Input .laz folder folder 
- cluster_id_pathname – Output cluster IDs folder folder 
- cluster_centers_pathname – Output cluster centers .laz folder folder 
- wireframe_pathname – Output wireframe connections folder folder 
- epsilon – DBSCAN epsilon 
- min_samples – DBSCAN min_samples 
- dim – Point dimension 
- wireframe – Whether to compute wireframe connections 
 
 
 - filter_label_disagreement_knn(path_points_in='__auto__', path_labels_in='__auto__', path_label_disagrement_in='__auto__', path_label_disagrement_out='__auto__', distance=2, classes_to_compare='2', comparison_type='2', class_to_filter=1, dim_data=3, knn=2, comparison_axis=-1, invalid_label=0, extension_file_points_in='.laz', extension_file_labels_in='.npy', extension_file_label_disagrement_in='.npy', extension_file_label_disagrement_out='.npy', folder_parallel_processing='__auto__')
- filter label disagreement knn - Parameters:
- path_points_in – input folder [.laz or .las] 
- path_labels_in – input folder [.txt or .npy] 
- path_label_disagrement_in – input folder[.txt or .npy] 
- path_label_disagrement_out – output folder [.txt or .npy] 
- distance – distance threshold 
- classes_to_compare – classes to compare, comma separated 
- comparison_type – [ge: greater equal, le: less equal] 
- class_to_filter – class to filter 
- dim_data – Dimensions to use: 3: x,y,z; 2: x, y 
- knn – k-nearest-neighbours 
- comparison_axis – axis to compare: -1: eucledian distance; 0, 1 or 2: distance along x, y or z axis 
- invalid_label – invalid label 
 
 
 - filter_label_noise(path_in_data='__auto__', path_in_labels='__auto__', path_out='__auto__', k_nearest_neighbours=5, sigma=10.0, dim=3, invalid_label=0, extension_file_in_data='.laz', extension_file_in_labels='.labels', extension_file_out='.laz', folder_parallel_processing='__auto__')
- filter label noise - Parameters:
- path_in_data – input folder data 
- path_in_labels – input folder labels 
- path_out – output folder 
- k_nearest_neighbours – k nearest neighbours 
- sigma – sigma 
- dim – dim 
- invalid_label – invalid class label 
 
 
 - fit_line_model(path_in='segmented_object', path_out='fit_line_model', residual_threshold=30.05, min_samples=2, max_trials=1, max_dim=3, max_num_processes=0, folder_parallel_processing='__auto__')
- fit line model - Parameters:
- path_in – input folder 
- path_out – output folder 
- residual_threshold – maximum quantile 
- min_samples – minimum quantile 
- max_trials – maximum number of trials 
- max_dim – max_dim 0: x, 1: y, 3: z 
- max_num_processes – Number of parallel processes 
 
 
 - get_bounding_box(in_path='__auto__', dimension=3, out_path='__auto__', extension_in_file='.laz', extension_out_file='.npy', folder_parallel_processing='__auto__')
- Get bounding box from las or laz file - Parameters:
- in_path – Input .laz folder folder 
- dimension – Dimension of the point cloud 
- out_path – Output bounding box folder folder 
 
 
 - get_meta_data(in_path='__auto__', out_path='__auto__', extension_in_file='.laz', extension_out_file='.json', folder_parallel_processing='__auto__')
- Get meta data from las or laz file - Parameters:
- in_path – Input .laz folder folder 
- out_path – Output meta data folder folder 
 
 
 - get_point_values(path_source_in='__auto__', path_labels_out='__auto__', dtype='classification', decomposed_labels='True', extension_file_source_in='.laz', extension_file_labels_out='.txt', folder_parallel_processing='__auto__')
- get point values - Parameters:
- path_source_in – input folder [.laz or .las] 
- path_labels_out – output folder [.txt or .npy] 
- dtype – type 
- decomposed_labels – type 
 
 
 - iterative_closest_point(path_source_in='__auto__', path_target_in='__auto__', path_source_out='__auto__', path_trafo_out='__auto__', metric='point2point', threshold=0.2, max_correspondences=5, extension_file_source_in='.laz', extension_file_target_in='.laz', extension_file_source_out='.laz', extension_file_trafo_out='.txt', folder_parallel_processing='__auto__')
- iterative closest point - Parameters:
- path_source_in – input source folder 
- path_target_in – input target folder 
- path_source_out – output folder 
- path_trafo_out – output transformation 
- metric – [max, min, same]: same value range relative to maximum point [max], relative to minimum point [min] or absolute coordinates [same] 
- threshold – threshold to crop values 
- max_correspondences – threshold max nearest neighbours 
 
 
 - iterative_outlier_removal(path_in='segmented_object', path_out='iterative_outlier_removal', decay_factor=0.98, iteration_count=10, max_num_processes=0, folder_parallel_processing='__auto__')
- iterative outlier removal - Parameters:
- path_in – input folder 
- path_out – output folder 
- decay_factor – maximum quantile 
- iteration_count – minimum quantile 
- max_num_processes – Number of parallel processes 
 
 
 - make_laz_from_values(path_values_in='__auto__', path_points_out='__auto__', dtype='X,Y,Z', scale='0.01,0.01,0.01', point_format=7, extension_file_values_in='.npy', extension_file_points_out='.laz', folder_parallel_processing='__auto__')
- make laz from values - Parameters:
- path_values_in – input folder data 
- path_points_out – output folder 
- dtype – data channels 
- scale – scale value 
- point_format – point format 
 
 
 - make_line_model_from_points(path_in='segmented_object', path_out='vobject_coordinates3D', dim=3, max_num_processes=0, folder_parallel_processing='__auto__')
- make line model from points - Parameters:
- path_in – input folder data 
- path_out – output folder 
- dim – dimension 
- max_num_processes – maximum number of processes 
 
 
 - point_cloud_to_dsm(path_points_in='__auto__', path_dsm_out='__auto__', path_dtm_out='__auto__', path_chm_out='__auto__', grid_size=0.5, dtype='float32', extension_file_points_in='.laz', extension_file_dsm_out='.tif', extension_file_dtm_out='.tif', extension_file_chm_out='.tif', folder_parallel_processing='__auto__')
- point cloud to dsm - Parameters:
- path_points_in – input points 
- path_dsm_out – dsm folder 
- path_dtm_out – dtm folder 
- path_chm_out – chm folder 
- grid_size – grid size 
- dtype – data type 
 
 
 - quantile_filter(path_in='segmented_object', path_out='quantile_filterd', max_quantile=0.995, min_quantile=0.3, axis=2, max_num_processes=0, folder_parallel_processing='__auto__')
- quantile filter - Parameters:
- path_in – input folder 
- path_out – output folder 
- max_quantile – maximum quantile 
- min_quantile – minimum quantile 
- axis – axis 0: x, 1: y, 2: z 
- max_num_processes – Number of parallel processes 
 
 
 - retile_generate_grid_globally(in_paths='__auto__', dimension=3, grid_size='20,20,50', offset_factor=0.0, reference_point='', out_path_tiles='__auto__', out_path_mapping_slice_point_cloud='slices', out_path_mapping_point_cloud_to_tiles='mapping_point_cloud_to_tiles', out_path_mapping_tiles_to_point_cloud='mapping_tiles_to_point_cloud', extension_in_paths='.laz', extension_out_path_tiles='', folder_parallel_processing='__auto__')
- Create grid for retileing point clouds over multiple georeferenced point clouds - Parameters:
- in_paths – folder to laz folders to be retiled 
- dimension – Dimension to be retiled (x,y) or (x,y,z) 
- grid_size – Grid size for retileing 
- offset_factor – Offset factor for grid generation 
- reference_point – Reference point for grid generation, empty for default (min_x, min_y, min_z) 
- out_path_tiles – Output bounding box / tiles folder 
- out_path_mapping_slice_point_cloud – Output path for mapping that contains the point clouds (including neighbouring point clouds) that are used to generate slices from point cloud x 
- out_path_mapping_point_cloud_to_tiles – Output path for mapping that contains the tiles that are generated from point cloud x 
- out_path_mapping_tiles_to_point_cloud – Output path for mapping that contains the point clouds that are used to generate tile x 
 
 
 - retile_generate_grid_locally(in_path='__auto__', dimension=3, grid_size='20,20,50', offset_factor=0.0, reference_point='', out_path_tiles='__auto__', prefix_tiles='grid_', out_path_mapping_slice_point_cloud='__auto__', out_path_mapping_point_cloud_to_tiles='__auto__', out_path_mapping_tiles_to_point_cloud='__auto__', extension_in_path='.laz', extension_out_path_tiles='', extension_out_path_mapping_slice_point_cloud='.txt', extension_out_path_mapping_point_cloud_to_tiles='.txt', extension_out_path_mapping_tiles_to_point_cloud='.txt', folder_parallel_processing='__auto__')
- Create grid for retileing individual point clouds - Parameters:
- in_path – folder to laz folders to be retiled 
- dimension – Dimension to be retiled (x,y) or (x,y,z) 
- grid_size – Grid size for retileing 
- offset_factor – Offset factor for grid generation 
- reference_point – Reference point for grid generation, empty for default (min_x, min_y, min_z) 
- out_path_tiles – Output bounding box / tiles folder 
- prefix_tiles – Prefix for the tiles 
- out_path_mapping_slice_point_cloud – Output folder for mapping that contains the point clouds (including neighbouring point clouds) that are used to generate slices from point cloud x 
- out_path_mapping_point_cloud_to_tiles – Output folder for mapping that contains the tiles that are generated from point cloud x 
- out_path_mapping_tiles_to_point_cloud – Output folder for mapping that contains the point clouds that are used to generate tile x 
 
 
 - retile_grid_to_point_cloud(in_path_grid='point_cloud_grid', in_path_mapping='__auto__', out_path_points='__auto__', cols='', extension_in_path_mapping='.txt', extension_out_path_points='.laz', folder_parallel_processing='__auto__')
- retile point clouds to grid - Parameters:
- in_path_grid – folder that contains the retiled point clouds 
- in_path_mapping – Mapping that specifies, which point clouds of the grid intersect with the original point cloud 
- out_path_points – Output folder for the merged point cloud 
- cols – colums used from point cloud, default is all columns 
 
 
 - retile_grid_to_point_probabilities(in_path_point_grid='None', in_path_probabilities='point_cloud_probabilities', in_path_mapping='__auto__', out_path_probabilities='__auto__', class_names='1,2,3,4,5,6,7,8,9,10', extension_in_path_mapping='.txt', extension_out_path_probabilities='.npy', folder_parallel_processing='__auto__')
- retile point clouds to grid - Parameters:
- in_path_point_grid – folder that contains the retiled point clouds 
- in_path_probabilities – folder that contains the probabilities of the retiled point clouds 
- in_path_mapping – Mapping that specifies, which point clouds of the grid intersect with the original point cloud 
- out_path_probabilities – Output folder for the merged probabilities 
- class_names – class names 
 
 
 - retile_point_cloud_to_grid(in_path_points='__auto__', in_path_grids='grid1.npy,grid2.npy,grid3.npy', out_path_points='out.laz,out2.laz', cols='', extension_in_path_points='.laz', folder_parallel_processing='__auto__')
- retile point clouds to grid - Parameters:
- in_path_points – Output folder for mapping that contains the point clouds (including neighbouring point clouds) that are used to generate slices from point cloud x 
- in_path_grids – Output path for mapping that contains the tiles that are generated from point cloud x 
- out_path_points – Output path to retiled point clouds 
- cols – colums used from point cloud, default is all columns 
 
 
 - select_center_object(in_directory='laz_files', out_path='__auto__', latitude=1, longitude=1, extension_out_file='.laz', folder_parallel_processing='__auto__')
- select center object - Parameters:
- in_directory – input directory 
- out_path – output folder 
- latitude – latitude 
- longitude – longitude 
 
 
 - select_points_by_value(path_source_in='__auto__', min_value=1, max_value=1, attribute='classification', path_source_out='__auto__', keep_empty='True', extension_file_source_in='', extension_file_source_out='', folder_parallel_processing='__auto__')
- Selects points by value of attribute - Parameters:
- path_source_in – input folder data 
- min_value – minimum value 
- max_value – maximum value 
- attribute – feature for selection 
- path_source_out – output folder 
- keep_empty – save empty files 
 
 
 - uniform_down_sampling(input_path='__auto__', cols='', output_path='__auto__', every_k_points=2, extension_input_file='.laz', extension_output_file='.laz', folder_parallel_processing='__auto__')
- Uniform down sampling of point cloud - Parameters:
- input_path – Input point cloud folder 
- cols – Columns to read from input file, default is all columns 
- output_path – Output point cloud folder 
- every_k_points – Keep every k points 
 
 
 - uniform_down_sampling_voxel(input_path='__auto__', cols='', output_path='__auto__', voxel_size=0.05, extension_input_file='.laz', extension_output_file='.laz', folder_parallel_processing='__auto__')
- Uniform down sampling of point cloud using voxel grids - Parameters:
- input_path – Input point cloud folder 
- cols – Columns to read from input file, default is all columns 
- output_path – Output point cloud folder 
- voxel_size – voxel size 
 
 
 - uniform_downsampling(path_in='__auto__', path_out='__auto__', k=3, dtype='', extension_file_in='.laz', extension_file_out='.laz', folder_parallel_processing='__auto__')
- uniform downsampling - Parameters:
- path_in – input folder data 
- path_out – output folder 
- k – k 
- dtype – values from point cloud, e.g. X,Y,Z 
 
 
 - voxel_downsampling(path_in='__auto__', path_out='__auto__', voxel_size=0.1, dtype='', extension_file_in='.laz', extension_file_out='.laz', folder_parallel_processing='__auto__')
- deprecated, please use unfiorm_down_sampling_voxel instead! - Parameters:
- path_in – input folder data 
- path_out – output folder 
- voxel_size – voxel size 
- dtype – values from point cloud, e.g. X,Y,Z 
 
 
 
 - class qc(outer_class)
- Bases: - object- Namespace for qc functions. - report_image_completeness(in_path='__auto__', in_meta_data_path='__auto__', out_path='__auto__', grid_size=0.5, populated_class=1, small_holes_class=100, large_holes_class=255, keep_error_free='True', extension_in_file='.txt', extension_in_meta_data_file='.json', extension_out_file='.txt', folder_parallel_processing='__auto__')
- report image completeness - Parameters:
- in_path – folder with count of classes 
- in_meta_data_path – folder with metadata 
- out_path – output report folder 
- grid_size – grid size 
- populated_class – populated class 
- small_holes_class – small holes class 
- large_holes_class – large holes class 
- keep_error_free – Save empty files? 
 
 
 - report_lidar_completeness(in_path='__auto__', out_path='__auto__', grid_size=0.5, populated_class=1, small_holes_class=100, large_holes_class=255, keep_error_free='True', extension_in_file='.txt', extension_out_file='.txt', folder_parallel_processing='__auto__')
- report lidar completeness - Parameters:
- in_path – folder with erroneous points 
- out_path – output report folder 
- grid_size – grid size 
- populated_class – populated class 
- small_holes_class – small holes class 
- large_holes_class – large holes class 
- keep_error_free – Save empty files? 
 
 
 - report_qc_classification(in_path='__auto__', out_path='__auto__', error_classes='148,149', error_names='Line,Tower', keep_error_free='True', extension_in_file='.laz', extension_out_file='.txt', folder_parallel_processing='__auto__')
- report qc classification - Parameters:
- in_path – folder with erroneous points 
- out_path – output report folder 
- error_classes – error classes 
- error_names – error names 
- keep_error_free – Save empty files? 
 
 
 - report_vegetation_occurance(in_path='__auto__', out_path='__auto__', ground_classes_old='2,3,6,7,15', ground_classes_new='1,3,9,11,15', vegetation_old='6,7,15', vegetation_new='9,11,15', keep_error_free='True', extension_in_file='.txt', extension_out_file='.txt', folder_parallel_processing='__auto__')
- report vegetation occurance - Parameters:
- in_path – folder with erroneous points 
- out_path – output report folder 
- ground_classes_old – ground classes 
- ground_classes_new – ground classes 
- vegetation_old – vegetation old classes 
- vegetation_new – vegetation new classes 
- keep_error_free – Save empty files? 
 
 
 
 - class shp(outer_class)
- Bases: - object- Namespace for shp functions. - extract_multipolygons_from_shp(shp_path='__auto__', out_polygon_path='polygons/', out_attributes_path='attributes/', shape_id=-1, name_id=0, extension_shp_file='', folder_parallel_processing='__auto__')
- extract multipolygons from shp - Parameters:
- shp_path – input shp folder 
- out_polygon_path – folder with polygons from shape file 
- out_attributes_path – folder with records from shape file 
- shape_id – id of polygon: [-1 parses all polygons] 
- name_id – id of polygon: [-1 ignores name] 
 
 
 - intersecting_polygons(input_path='__auto__', comparison_path='polygons', output_path='__auto__', extension_input_file='.pickle', extension_output_file='.txt', folder_parallel_processing='__auto__')
- intersecting polygons - Parameters:
- input_path – Input folder for the polygon 
- comparison_path – Input folder containing polygons for comparison 
- output_path – Output folder for the list of intersecting polygon foldernames 
 
 
 - make_polygon_from_json(input_path='__auto__', output_path='__auto__', point_identifiers='min_x,min_y;min_x,max_y;max_x,max_y;max_x,min_y', extension_input_file='.json', extension_output_file='.pickle', folder_parallel_processing='__auto__')
- make polygon from json - Parameters:
- input_path – Input folder for the json folder 
- output_path – Output folder for the polygon folder 
- point_identifiers – Point identifiers for the polygon 
 
 
 - wireframe_to_dxf(input_path='__auto__', edges_path='__auto__', output_path='__auto__', extension_input_file='.laz', extension_edges_file='.npy', extension_output_file='.dxf', folder_parallel_processing='__auto__')
- wireframe to dxf - Parameters:
- input_path – Input folder for the vertices 
- edges_path – Input folder for the edges 
- output_path – Output folder for the dxf model 
 
 
 
 - class sys(outer_class)
- Bases: - object- Namespace for sys functions. - copy_file_in_cloud(target='__auto__', destination='__auto__', extension_target='', extension_destination='', folder_parallel_processing='__auto__')
- copy file in cloud - Parameters:
- target – Target to be moved 
- destination – Destination 
 
 
 - create_directory_in_cloud(destination='__auto__', extension_destination='', folder_parallel_processing='__auto__')
- create directory in cloud - Parameters:
- destination – Destionation location on host. default folder: ./data 
 
 - download_data_to_cloud(url='__auto__', destination='__auto__', protocol='', download_type=0, username='', password='', port=21, extension_url='', extension_destination='', folder_parallel_processing='__auto__')
- download data to cloud - Parameters:
- url – URL to data 
- destination – Destionation location on host. default folder: ./data 
- protocol – protocol: : automatically try to infer protocol, ftp: ftp, sftp: sftp 
- download_type – download type: 0: all files from folder, 1: individual file 
- username – Username 
- password – Password 
- port – port 
 
 
 - download_from_host_to_aipha(url='__auto__', port='22', username='ubuntu', identity_path='', location='file.laz', destination='__auto__', extension_url='.1', extension_destination='.laz', folder_parallel_processing='__auto__')
- Download a path from a host via ssh - Parameters:
- url – Url to host 
- port – Port to host 
- username – Username to host 
- identity_path – Path to identity file on aipha 
- location – Path to download from host 
- destination – Location to upload to aipha 
 
 
 - download_from_s3_to_aipha(access_key_id='YOUR_KEY_ID', secret_access_key='YOUR_SECRET_KEY', aws_region='eu-central-1', location='file.laz', destination='__auto__', bucket_name='Your S3 bucket', extension_destination='.laz', folder_parallel_processing='__auto__')
- Download a path from a S3 bucket - Parameters:
- access_key_id – AWS access key ID 
- secret_access_key – AWS secret access key 
- aws_region – AWS region 
- location – Path to download from s3 
- destination – Location to upload to aipha 
- bucket_name – S3 bucket name 
 
 
 - find_file_paths(input_paths='__auto__', output_paths='__auto__', search_path='/search_folder', replace_in='', replace_out='', substrings='', extension_input_files='.txt', extension_output_files='.txt', folder_parallel_processing='__auto__')
- find file paths - Parameters:
- input_paths – File containing the list of foldernames 
- output_paths – Path to save the modified folderlist 
- search_path – Folder to traverse for finding files 
- replace_in – The part to replace in the filenames 
- replace_out – The new part to replace with 
- substrings – a list of substrings that need to occure in the file paths to be vallid 
 
 
 - list_files_in_cloud(target='__auto__', path_out='__auto__', extension_target='', extension_file_out='.txt', folder_parallel_processing='__auto__')
- list files in cloud - Parameters:
- target – Target to be listet 
- path_out – output_folder 
 
 
 - move_file_in_cloud(target='__auto__', destination='__auto__', extension_target='', extension_destination='', folder_parallel_processing='__auto__')
- move file in cloud - Parameters:
- target – Target to be moved 
- destination – Destination 
 
 
 - recursive_list(target='__auto__', destination='__auto__', extension_target='', extension_destination='.txt', folder_parallel_processing='__auto__')
- recursive list - Parameters:
- target – Target folder to be listed recursively 
- destination – Output folder 
 
 
 - remove_files_from_cloud(target='__auto__', extension_target='', folder_parallel_processing='__auto__')
- remove files from cloud - Parameters:
- target – Target to be deleted 
 
 - rename_file_in_cloud(target='__auto__', prefix='', suffix='', replace_from='', replace_to='', replace_count=0, extension_target='', folder_parallel_processing='__auto__')
- rename file in cloud - Parameters:
- target – Target to be renamed 
- prefix – add prefix 
- suffix – add suffix 
- replace_from – replace string in filename 
- replace_to – replace string in filename 
- replace_count – replace string in filename 
 
 
 - select_by_identifier(original_path='original_folder', original_identifier_path='__auto__', output_path='output_folder', extension_original_identifier_file='.txt', folder_parallel_processing='__auto__')
- select by identifier - Parameters:
- original_path – original folder 
- original_identifier_path – original identifiers 
- output_path – output folder 
 
 
 - select_corresponding_path(original_path='__auto__', original_identifier_path='__auto__', corresponding_path='__auto__', output_path='__auto__', selection_criteria='oldest', default_value='__original__', extension_original_file='.txt', extension_original_identifier_file='.txt', extension_corresponding_file='.txt', extension_output_file='.txt', folder_parallel_processing='__auto__')
- select corresponding path - Parameters:
- original_path – original folders 
- original_identifier_path – original identifiers 
- corresponding_path – corresponding folders 
- output_path – output folder 
- selection_criteria – selection criteria: [oldest, newest, shortest, longest] 
- default_value – default value if no corresponding path is found 
 
 
 - split_path(in_path='__auto__', out_path='__auto__', split_type='filename', extension_in_path='', extension_out_path='', folder_parallel_processing='__auto__')
- split path - Parameters:
- in_path – input folder 
- out_path – output folder 
- split_type – split type: [filename, dirname, basename, ext] 
 
 
 - touch_file_in_cloud(target='__auto__', extension_target='.txt', folder_parallel_processing='__auto__')
- touch file in cloud - Parameters:
- target – File to be touched 
 
 - upload_data_from_cloud(url='__auto__', target='__auto__', protocol='', username='', password='', port=21, extension_url='', extension_target='', folder_parallel_processing='__auto__')
- upload data from cloud - Parameters:
- url – destination URL 
- target – Target location on host for upload. default folder: ./data 
- protocol – protocol: : automatically try to infer protocol, ftp: ftp, sftp: sftp 
- username – Username 
- password – Password 
- port – port 
 
 
 - upload_from_aipha_to_host(url='__auto__', port='22', username='ubuntu', identity_path='', target='__auto__', location='file.laz', extension_url='.1', extension_target='.laz', folder_parallel_processing='__auto__')
- Upload a path to a host via ssh - Parameters:
- url – Url to host 
- port – Port to host 
- username – Username to host 
- identity_path – Path to identity file on aipha 
- target – Path to upload from aipha 
- location – Location of file to upload on host 
 
 
 - upload_from_aipha_to_s3(access_key_id='YOUR_KEY_ID', secret_access_key='YOUR_SECRET_KEY', aws_region='eu-central-1', target='__auto__', location='file.laz', bucket_name='Your S3 bucket', extension_target='.laz', folder_parallel_processing='__auto__')
- Upload a path to a S3 bucket - Parameters:
- access_key_id – AWS access key ID 
- secret_access_key – AWS secret access key 
- aws_region – AWS region 
- target – Path to upload from aipha 
- location – Location of file to upload on s3 
- bucket_name – S3 bucket name 
 
 
 
 - class tdp(outer_class)
- Bases: - object- Namespace for tdp functions. - convert_laz_point_formats(path_in='__auto__', path_out='__auto__', format=7, extension_file_in='.laz', extension_file_out='.labels', folder_parallel_processing='__auto__')
- convert laz point formats - Parameters:
- path_in – input folder 
- path_out – results folder 
- format – format 
 
 
 - merge_and_split_results_csv(new_tower_path='new_paths.txt', last_tower_path='last_paths.txt', reference_tower_path='reference_paths.txt', results_path_csv='results.csv', results_plots_path='results_plots', merged_results_path_csv='results/Reports_2023', resturctured_plots_path='results/10-Plots-Tragwerke', input_path_structure_path='input_file_structure.txt', year='2023', folder_parallel_processing='__auto__')
- [atr] Merge results csv - Parameters:
- new_tower_path – input new path data 
- last_tower_path – input last path 
- reference_tower_path – input reference path 
- results_path_csv – input results.csv path 
- results_plots_path – input results_plots path 
- merged_results_path_csv – output path 
- resturctured_plots_path – output path 
- input_path_structure_path – input file structure path 
- year – year 
 
 
 - point_cloud_classification_inference(path_in='__auto__', path_out='__auto__', model_path='network_parameters', cols_data='X,Y,Z', cols_labels='classification', extension_file_in='.laz', extension_file_out='.labels', folder_parallel_processing='__auto__')
- point cloud classification inference - Parameters:
- path_in – input folder 
- path_out – results folder 
- model_path – path to model 
- cols_data – attributes used 
- cols_labels – label name 
 
 
 - point_cloud_filter_label_noise(path_in_data='__auto__', path_in_labels='__auto__', path_out='__auto__', k_nearest_neighbours=5, sigma=10.0, dim=3, invalid_label=0, extension_file_in_data='.laz', extension_file_in_labels='.labels', extension_file_out='.laz', folder_parallel_processing='__auto__')
- point cloud filter label noise - Parameters:
- path_in_data – input folder data 
- path_in_labels – input folder labels 
- path_out – output folder 
- k_nearest_neighbours – k nearest neighbours 
- sigma – sigma 
- dim – dim 
- invalid_label – invalid class label 
 
 
 - segment_objects(in_points_path='__auto__', in_labels_path='__auto__', out_directory='segmented_object', out_prefix='object', label_col='classification', object_class=68, max_distance=2, min_points=100, extension_in_points_file='', extension_in_labels_file='', folder_parallel_processing='__auto__')
- segment objects - Parameters:
- in_points_path – input folder points 
- in_labels_path – input folder labels 
- out_directory – output directory 
- out_prefix – output filename prefix 
- label_col – label column id 
- object_class – obejct class 
- max_distance – maximum distance for segmentation 
- min_points – minimum number of points 
 
 
 - tower_displacement(laz_in_path_new='__auto__', laz_in_path_old='__auto__', laz_in_path_ref='__auto__', tower_name='', year_new='2022', year_old='2020', year_ref='2018', results_out_path='__auto__', plots_out_path='plots/', extension_laz_in_file_new='.laz', extension_laz_in_file_old='.laz', extension_laz_in_file_ref='.laz', extension_results_out_file='.txt', folder_parallel_processing='__auto__')
- tower displacement - Parameters:
- laz_in_path_new – laz input folder new data 
- laz_in_path_old – laz input folder last data 
- laz_in_path_ref – laz input folder first data 
- tower_name – tower name 
- year_new – year of new data 
- year_old – year of old data 
- year_ref – year of reference data 
- results_out_path – result folder folder 
- plots_out_path – result folder path 
 
 
 
 - class val(outer_class)
- Bases: - object- Namespace for val functions. - add_constant(inpath='__auto__', outpath='__auto__', dtype='float', constant=0.0, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Add a constant value to a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- constant – Constant value to add (default: 0.0) 
 
 
 - argmax(inpath='__auto__', outpath='__auto__', dtype='float', axis=-1, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Argmax of a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- axis – Axis to find the argmax (default: None) 
 
 
 - argmin(inpath='__auto__', outpath='__auto__', dtype='float', axis=-1, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Argmin of a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- axis – Axis to find the argmax (default: None) 
 
 
 - connected_components_labeling(pathname_in='__auto__', pathname_out='__auto__', dtype='float', no_type=0.0, value=1.0, extension_filename_in='.npy', extension_filename_out='.npy', folder_parallel_processing='__auto__')
- Perform connected components labeling on a matrix. - Parameters:
- pathname_in – Input folder folder for the matrix 
- pathname_out – Output folder folder for the labeled matrix 
- dtype – Data type of the matrix (default: float) 
- no_type – Value representing no_type in the matrix (default: 0.0) 
- value – Value representing value in the matrix (default: 1.0) 
 
 
 - count_unique_values(pathname_in='__auto__', pathname_out='__auto__', dtype='float', ignore='nan', extension_filename_in='.npy', extension_filename_out='.npy', folder_parallel_processing='__auto__')
- Count unique occurrences of values in a matrix. - Parameters:
- pathname_in – Input folder folder for the matrix 
- pathname_out – Output folder folder for the unique counts matrix 
- dtype – Data type of the matrix (default: float) 
- ignore – Data value to ignore 
 
 
 - divide_constant(inpath='__auto__', outpath='__auto__', dtype='float', constant=1.0, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Divide a constant value from a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- constant – Constant value to divide (default: 1.0) 
 
 
 - equal_constant(inpath='__auto__', outpath='__auto__', dtype='float', constant=1, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Equal operator on a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- constant – Value to compare (default: 1) 
 
 
 - greater_constant(inpath='__auto__', outpath='__auto__', dtype='float', constant=1, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Greater operator on a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- constant – Value to compare (default: 1) 
 
 
 - greater_equal_constant(inpath='__auto__', outpath='__auto__', dtype='float', constant=1, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Greater equal operator on a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- constant – Value to compare (default: 1) 
 
 
 - hstack(path_values_in='__auto__', path_values_out='__auto__', dtype='str', extension_file_values_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- Parameters:
- path_values_in – input folder [.npy, .labels or .txt] 
- path_values_out – output folder [.txt or .npy] 
- dtype – data type 
 
 
 - less_constant(inpath='__auto__', outpath='__auto__', dtype='float', constant=1, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Less operator on a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- constant – Value to compare (default: 1) 
 
 
 - less_equal_constant(inpath='__auto__', outpath='__auto__', dtype='float', constant=1, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Less equal operator on a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- constant – Value to compare (default: 1) 
 
 
 - mask_subset(path_values1_in='__auto__', path_mask_in='__auto__', path_values_out='__auto__', extension_file_values1_in='.npy', extension_file_mask_in='.npy', extension_file_values_out='.txt', folder_parallel_processing='__auto__')
- mask subset - Parameters:
- path_values1_in – input folder [.txt or .npy] 
- path_mask_in – input folder that contains [0,1] values 
- path_values_out – output folder [.txt or .npy] 
 
 
 - masked_assign_constant(path_values_in='__auto__', constant=0.0, path_mask_in='__auto__', path_values_out='__auto__', extension_file_values_in='.npy', extension_file_mask_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- masked assign constant - Parameters:
- path_values_in – input folder [.txt or .npy] 
- constant – constant value to assign 
- path_mask_in – input folder that contains [0,1] values 
- path_values_out – output folder [.txt or .npy] 
 
 
 - max(inpath='__auto__', outpath='__auto__', dtype='float', extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Maximum of a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
 
 
 - min(inpath='__auto__', outpath='__auto__', dtype='float', extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Minimum of a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
 
 
 - multiply_constant(inpath='__auto__', outpath='__auto__', dtype='float', constant=1.0, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Multiply a constant value from a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- constant – Constant value to multiply (default: 1.0) 
 
 
 - not_equal_constant(inpath='__auto__', outpath='__auto__', dtype='float', constant=1, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Not equal operator on a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- constant – Value to compare (default: 1) 
 
 
 - remap_values(path_values_in='__auto__', path_values_out='__auto__', map_in='1,2,3,4', map_out='3,1,2,2', dtype_in='int32', dtype_out='int32', unmapped='0', extension_file_values_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- remap values - Parameters:
- path_values_in – input folder [.txt, .labels or .npy] 
- path_values_out – output folder [.txt, .labels or .npy] 
- map_in – map in 
- map_out – map out 
- dtype_in – data type input 
- dtype_out – data type output 
- unmapped – default value for values where no mapping exists 
 
 
 - replace_in_string_array(path_in='__auto__', path_out='__auto__', tokens_to_replace='', replacement_tokens='', extension_file_in='.txt', extension_file_out='.txt', folder_parallel_processing='__auto__')
- Replace tokens in a string array - Parameters:
- path_in – Input foldername 
- path_out – Output foldername 
- tokens_to_replace – Tokens to replace, comma separated 
- replacement_tokens – Replacement tokens, comma separated 
 
 
 - replace_strings(path_in='__auto__', path_out='__auto__', replace_from='', replace_to='', extension_file_in='.txt', extension_file_out='.txt', folder_parallel_processing='__auto__')
- Substrings replacement in an ASCII file - Parameters:
- path_in – Path to the input folder 
- path_out – Path to the output folder 
- replace_from – Comma-separated list of substrings to replace 
- replace_to – Comma-separated list of replacement substrings 
 
 
 - resize_slice_matrix(pathname_in='__auto__', pathname_out='__auto__', dtype='float', indices=':,124:,:3', default_value=0.0, extension_filename_in='.npy', extension_filename_out='.npy', folder_parallel_processing='__auto__')
- Resize and slice a matrix based on indices. - Parameters:
- pathname_in – Input folder folder for the matrix 
- pathname_out – Output folder folder for the resized and sliced matrix 
- dtype – Data type of the matrix (default: float) 
- indices – Indices to slice the matrix (in NumPy slicing convention) 
- default_value – Default value to fill when resizing (default: 0.0) 
 
 
 - slice_string_array(path_in='__auto__', path_out='__auto__', slices='', extension_file_in='.txt', extension_file_out='.txt', folder_parallel_processing='__auto__')
- Slice a string array - Parameters:
- path_in – Input foldername 
- path_out – Output foldername 
- slices – Slices to take 
 
 
 - sliced_assign_constant(path_in='__auto__', path_out='__auto__', indices=':', constant=0.0, extension_file_in='.npy', extension_file_out='.txt', folder_parallel_processing='__auto__')
- sliced assign constant - Parameters:
- path_in – input folder [.txt or .npy] 
- path_out – output folder [.txt or .npy] 
- indices – indices to slice 
- constant – constant value to assign 
 
 
 - subtract_constant(inpath='__auto__', outpath='__auto__', dtype='float', constant=0.0, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Subtract a constant value from a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- constant – Constant value to subtract (default: 0.0) 
 
 
 - sum(inpath='__auto__', outpath='__auto__', dtype='float', axis=-1, extension_infile='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Sum all values of a matrix. - Parameters:
- inpath – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
- axis – axis to sum [default -1: no axis is used] 
 
 
 - values_add(path_values1_in='__auto__', path_values2_in='__auto__', path_values_out='__auto__', ignore_label=nan, value_subset1=nan, extension_file_values1_in='.npy', extension_file_values2_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- values add - Parameters:
- path_values1_in – input folder [.npy, .labels or .txt] 
- path_values2_in – input folder [.npy, .labels or .txt] 
- path_values_out – output folder [.txt or .npy] 
- ignore_label – ignore value default: nan 
- value_subset1 – ignore value default: nan 
 
 
 - values_assign(path_values1_in='__auto__', path_values2_in='__auto__', path_values_out='__auto__', ignore_label=nan, value_subset1=nan, extension_file_values1_in='.npy', extension_file_values2_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- values assign - Parameters:
- path_values1_in – input folder [.npy or .txt] 
- path_values2_in – input folder [.npy or .txt] 
- path_values_out – output folder [.txt or .npy] 
- ignore_label – ignore value default: nan 
- value_subset1 – ignore value default: nan 
 
 
 - values_distance(pathname_is='__auto__', pathname_should='__auto__', output_path='__auto__', dtype='float', no_type=0.0, value=1.0, gridsize=1.0, extension_filename_is='.npy', extension_filename_should='.npy', extension_output_file='.npy', folder_parallel_processing='__auto__')
- Compute Euclidean distance from is matrix to should matrix. - Parameters:
- pathname_is – Input folder folder for is matrix 
- pathname_should – Input folder folder for should matrix 
- output_path – Output folder folder for distances matrix 
- dtype – Data type of the matrices (default: float) 
- no_type – Value representing no_type in the matrices (default: 0.0) 
- value – Value representing value in the matrices (default: 1.0) 
- gridsize – Resolution of the spatial grid in meters (default: 1.0) 
 
 
 - values_divide(path_values1_in='__auto__', path_values2_in='__auto__', path_values_out='__auto__', ignore_label=nan, value_subset1=nan, extension_file_values1_in='.npy', extension_file_values2_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- values divide - Parameters:
- path_values1_in – input folder [.npy or .txt] 
- path_values2_in – input folder [.npy or .txt] 
- path_values_out – output folder [.txt or .npy] 
- ignore_label – ignore value default: nan 
- value_subset1 – ignore value default: nan 
 
 
 - values_equal(path_values1_in='__auto__', path_values2_in='__auto__', path_values_out='__auto__', ignore_label=nan, value_subset1=nan, extension_file_values1_in='.npy', extension_file_values2_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- values equal - Parameters:
- path_values1_in – input folder [.npy or .txt] 
- path_values2_in – input folder [.npy or .txt] 
- path_values_out – output folder [.txt or .npy] 
- ignore_label – ignore value default: nan 
- value_subset1 – ignore value default: nan 
 
 
 - values_greater(inpath1='__auto__', inpath2='__auto__', outpath='__auto__', dtype='float', extension_infile1='.npy', extension_infile2='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Elementwiese greater operator on a matrix. - Parameters:
- inpath1 – Input folder folder 
- inpath2 – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
 
 
 - values_greater_equal(inpath1='__auto__', inpath2='__auto__', outpath='__auto__', dtype='float', extension_infile1='.npy', extension_infile2='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Elementwiese greater equal operator on a matrix. - Parameters:
- inpath1 – Input folder folder 
- inpath2 – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
 
 
 - values_hstack(path_values1_in='__auto__', path_values2_in='__auto__', path_values_out='__auto__', dtype='str', extension_file_values1_in='.npy', extension_file_values2_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- values hstack - Parameters:
- path_values1_in – input folder [.npy, .labels or .txt] 
- path_values2_in – input folder [.npy, .labels or .txt] 
- path_values_out – output folder [.txt or .npy] 
- dtype – data type 
 
 
 - values_less(inpath1='__auto__', inpath2='__auto__', outpath='__auto__', dtype='float', extension_infile1='.npy', extension_infile2='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Elementwiese less operator on a matrix. - Parameters:
- inpath1 – Input folder folder 
- inpath2 – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
 
 
 - values_less_equal(inpath1='__auto__', inpath2='__auto__', outpath='__auto__', dtype='float', extension_infile1='.npy', extension_infile2='.npy', extension_outfile='.npy', folder_parallel_processing='__auto__')
- Elementwiese less equal operator on a matrix. - Parameters:
- inpath1 – Input folder folder 
- inpath2 – Input folder folder 
- outpath – Output folder folder 
- dtype – Data type of the matrix (default: float) 
 
 
 - values_masked_assign(path_values1_in='__auto__', path_values2_in='__auto__', path_mask_in='__auto__', path_values_out='__auto__', extension_file_values1_in='.npy', extension_file_values2_in='.npy', extension_file_mask_in='.npy', extension_file_values_out='.txt', folder_parallel_processing='__auto__')
- values masked assign - Parameters:
- path_values1_in – input folder [.txt or .npy] 
- path_values2_in – input folder [.txt or .npy] 
- path_mask_in – input folder that contains [0,1] values 
- path_values_out – output folder [.txt or .npy] 
 
 
 - values_multiply(path_values1_in='__auto__', path_values2_in='__auto__', path_values_out='__auto__', ignore_label=nan, value_subset1=nan, extension_file_values1_in='.npy', extension_file_values2_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- values multiply - Parameters:
- path_values1_in – input folder [.npy or .txt] 
- path_values2_in – input folder [.npy or .txt] 
- path_values_out – output folder [.txt or .npy] 
- ignore_label – ignore value default: nan 
- value_subset1 – ignore value default: nan 
 
 
 - values_not_equal(path_values1_in='__auto__', path_values2_in='__auto__', path_values_out='__auto__', ignore_label=nan, value_subset1=nan, extension_file_values1_in='.npy', extension_file_values2_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- values not equal - Parameters:
- path_values1_in – input folder [.npy or .txt] 
- path_values2_in – input folder [.npy or .txt] 
- path_values_out – output folder [.txt or .npy] 
- ignore_label – ignore value default: nan 
- value_subset1 – ignore value default: nan 
 
 
 - values_sliced_assign(path_in='__auto__', path_out='__auto__', indices=':', path_values_in='__auto__', default_value=0.0, extension_file_in='.npy', extension_file_out='.txt', extension_file_values_in='.npy', folder_parallel_processing='__auto__')
- values sliced assign - Parameters:
- path_in – input folder [.txt or .npy] 
- path_out – output folder [.txt or .npy] 
- indices – indices to slice 
- path_values_in – input folder [.txt or .npy] 
- default_value – default value to assign 
 
 
 - values_subtract(path_values1_in='__auto__', path_values2_in='__auto__', path_values_out='__auto__', ignore_label=nan, value_subset1=nan, extension_file_values1_in='.npy', extension_file_values2_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- values subtract - Parameters:
- path_values1_in – input folder [.npy or .txt] 
- path_values2_in – input folder [.npy or .txt] 
- path_values_out – output folder [.txt or .npy] 
- ignore_label – ignore value default: nan 
- value_subset1 – ignore value default: nan 
 
 
 - vstack(path_values_in='__auto__', path_values_out='__auto__', dtype='str', extension_file_values_in='.npy', extension_file_values_out='.npy', folder_parallel_processing='__auto__')
- Parameters:
- path_values_in – input folder [.npy, .labels or .txt] 
- path_values_out – output folder [.txt or .npy] 
- dtype – data type