Values distance folder

operators.val.values_distance_folder(client, foldername_is='/foldername_is', foldername_should='/foldername_should', output_folder='/output_folder', dtype='float', no_type=0.0, value=1.0, gridsize=1.0, worker_instance_type='x2large', manager_instance_type='small', extension_filename_is='.npy', extension_filename_should='.npy', extension_output_file='.npy', skip_existing_files=False)
Compute Euclidean distance from is matrix to should matrix.

values_distance_folder(client,
foldername_is=’/foldername_is’,
foldername_should=’/foldername_should’,
output_folder=’/output_folder’,
dtype=’float’,
no_type=0.0,
value=1.0,
gridsize=1.0,
worker_instance_type=’x2large’,
manager_instance_type=”small”,
extension_foldername_is=”.npy”,
extension_foldername_should=”.npy”,
extension_output_folder=”.npy”,
skip_existing_files = False )
Parameters:
  • dtype – Data type of the matrices (default: float)

  • no_type – Value representing no_type in the matrices (default: 0.0)

  • value – Value representing value in the matrices (default: 1.0)

  • gridsize – Resolution of the spatial grid in meters (default: 1.0)

  • foldername_is – Input folder folder for is matrix

  • foldername_should – Input folder folder for should matrix

  • output_folder – Output folder folder for distances matrix

  • worker_instance_type – cloud instance type of worker nodes

  • manager_instance_type – cloud instance type of manager node

  • extension_foldername_is – File extension of files in folder for foldername_is

  • extension_foldername_should – File extension of files in folder for foldername_should

  • extension_output_folder – File extension of files in folder for output_folder

  • skip_existing_files – skip files that already exist in the output folder