Evaluate semantic segmentation folder
- operators.ml3d.evaluate_semantic_segmentation_folder(client, prediction_folder='/prediction_folder', ground_truth_folder='/ground_truth_folder', class_names='1,2,3,4', invalid_label=0, worker_instance_type='x2large', manager_instance_type='small', extension_prediction_path='.labels', extension_ground_truth_path='.labels', skip_existing_files=False)
- Evaluate semantic segmentation
- evaluate_semantic_segmentation_folder(client,prediction_folder=’/prediction_folder’,ground_truth_folder=’/ground_truth_folder’,class_names=’1,2,3,4’,invalid_label=0,worker_instance_type=’x2large’,manager_instance_type=”small”,extension_prediction_folder=”.labels”,extension_ground_truth_folder=”.labels”,skip_existing_files = False )
 - Parameters:
- class_names – class names 
- invalid_label – Invalid label 
- prediction_folder – Path to prediction folder or folder 
- ground_truth_folder – Path to ground truth folder or folder 
- worker_instance_type – cloud instance type of worker nodes 
- manager_instance_type – cloud instance type of manager node 
- extension_prediction_folder – File extension of files in folder for prediction_folder 
- extension_ground_truth_folder – File extension of files in folder for ground_truth_folder 
- skip_existing_files – skip files that already exist in the output folder