Evaluate semantic segmentation folder

operators.ml3d.evaluate_semantic_segmentation_folder(client, prediction_folder='/prediction_folder', ground_truth_folder='/ground_truth_folder', class_names='1,2,3,4', invalid_label=0, worker_instance_type='x2large', manager_instance_type='small', extension_prediction_path='.labels', extension_ground_truth_path='.labels', skip_existing_files=False)
Evaluate semantic segmentation

evaluate_semantic_segmentation_folder(client,
prediction_folder=’/prediction_folder’,
ground_truth_folder=’/ground_truth_folder’,
class_names=’1,2,3,4’,
invalid_label=0,
worker_instance_type=’x2large’,
manager_instance_type=”small”,
extension_prediction_folder=”.labels”,
extension_ground_truth_folder=”.labels”,
skip_existing_files = False )
Parameters:
  • class_names – class names

  • invalid_label – Invalid label

  • prediction_folder – Path to prediction folder or folder

  • ground_truth_folder – Path to ground truth folder or folder

  • worker_instance_type – cloud instance type of worker nodes

  • manager_instance_type – cloud instance type of manager node

  • extension_prediction_folder – File extension of files in folder for prediction_folder

  • extension_ground_truth_folder – File extension of files in folder for ground_truth_folder

  • skip_existing_files – skip files that already exist in the output folder