Regression inference folder
- operators.ml3d.regression_inference_folder(client, folder_in_folder_points='/folder_in_folder_points', folder_out_folder_predictions='/folder_out_folder_predictions', in_model_path='parameters_model', worker_instance_type='x2large', manager_instance_type='small', extension_in_folder_points='.laz', extension_out_folder_predictions='.laz', skip_existing_files=False)
- regression_inference_folder(client,in_folder_points=’/in_folder_points’,out_folder_predictions=’/out_folder_predictions’,in_model_path=’parameters_model’,worker_instance_type=’x2large’,manager_instance_type=”small”,extension_in_folder_points=”.data_train/points”,extension_out_folder_predictions=”.data_train/predictions”,skip_existing_files = False )- Parameters:
- in_model_path – model path 
- folder_in_folder_points – input directory with training data 
- folder_out_folder_predictions – output directory with predictions 
- worker_instance_type – cloud instance type of worker nodes 
- manager_instance_type – cloud instance type of manager node 
- extension_in_folder_points – File extension of files in folder for folder_in_folder_points 
- extension_out_folder_predictions – File extension of files in folder for folder_out_folder_predictions 
- skip_existing_files – skip files that already exist in the output folder