Likelihood folder

operators.fvo.likelihood_folder(client, input_folder='/input_folder', points_folder='/points_folder', output_folder='/output_folder', max_distance=0.5, missing_distance=1.5, missing_knn=2, worker_instance_type='x2large', manager_instance_type='small', extension_input_file='.laz', extension_points_file='.laz', extension_output_file='.laz', skip_existing_files=False)
Compute class conditional probability distribution

likelihood_folder(client,
input_folder=’/input_folder’,
points_folder=’/points_folder’,
output_folder=’/output_folder’,
max_distance=0.5,
missing_distance=1.5,
missing_knn=2,
worker_instance_type=’x2large’,
manager_instance_type=”small”,
extension_input_folder=”.laz”,
extension_points_folder=”.laz”,
extension_output_folder=”.laz”,
skip_existing_files = False )
Parameters:
  • max_distance – probability max distance

  • missing_distance – interpolate missing points distance

  • missing_knn – interpolate number missing neighbours

  • input_folder – input LAZ folder folder

  • points_folder – input LAZ folder folder

  • output_folder – output LAZ folder folder

  • worker_instance_type – cloud instance type of worker nodes

  • manager_instance_type – cloud instance type of manager node

  • extension_input_folder – File extension of files in folder for input_folder

  • extension_points_folder – File extension of files in folder for points_folder

  • extension_output_folder – File extension of files in folder for output_folder

  • skip_existing_files – skip files that already exist in the output folder