Regression training folder
- operators.ml3d.regression_training_folder(client, folder_in_folder_points='/folder_in_folder_points', folder_in_folder_gt='/folder_in_folder_gt', out_model_path='parameters_model', voxel_size=0.02, zero_centering='True', point_names='X,Y,Z', feature_names='ones', learning_rate=3e-06, weight_decay=1e-09, num_epochs=500, batch_size=2, save_after_epochs=100, network_type='FCNN128', criterion_type='L1Mean', num_classes=1, worker_instance_type='x2large', manager_instance_type='small', extension_in_folder_points='.laz', extension_in_folder_gt='.laz', skip_existing_files=False)
- regression_training_folder(client,in_folder_points=’/in_folder_points’,in_folder_gt=’/in_folder_gt’,out_model_path=’parameters_model’,voxel_size=0.02,zero_centering=’True’,point_names=’X,Y,Z’,feature_names=’ones’,learning_rate=3e-6,weight_decay=1e-9,num_epochs=500,batch_size=2,save_after_epochs=100,network_type=’FCNN128’,criterion_type=’L1Mean’,num_classes=1,worker_instance_type=’x2large’,manager_instance_type=”small”,extension_in_folder_points=”.data_train/points”,extension_in_folder_gt=”.data_train/gt”,skip_existing_files = False )- Parameters:
- out_model_path – model path 
- voxel_size – voxel size 
- zero_centering – zero centering 
- point_names – point names 
- feature_names – feature names 
- learning_rate – learning rate 
- weight_decay – regularization decay 
- num_epochs – number of epochs 
- batch_size – batch size for training 
- save_after_epochs – save after epochs 
- network_type – model type of backbone network 
- criterion_type – model type of criterion 
- num_classes – number of classes 
- folder_in_folder_points – input directory with training data 
- folder_in_folder_gt – input directory with training data 
- worker_instance_type – cloud instance type of worker nodes 
- manager_instance_type – cloud instance type of manager node 
- extension_in_folder_points – File extension of files in folder for folder_in_folder_points 
- extension_in_folder_gt – File extension of files in folder for folder_in_folder_gt 
- skip_existing_files – skip files that already exist in the output folder