Knn classification
- operators.ml3d.knn_classification(client, in_path_to_points='new.laz', in_path_from_points='old.laz', out_path_labels='out.labels', out_path_probs='out.npy', k=3, max_distance=1.0, to_points_names='X,Y,Z', from_point_names='X,Y,Z', from_class_name='classification', instance_type='x2large')
- knn_classification( client,in_path_to_points=’new.laz’,in_path_from_points=’old.laz’,out_path_labels=’out.labels’,out_path_probs=’out.npy’,k=3,max_distance=1.0,to_points_names=’X,Y,Z’,from_point_names=’X,Y,Z’,from_class_name=’classification’,instance_type=’x2large’ )- Parameters:
- in_path_to_points – input point cloud to be labeled 
- in_path_from_points – input reference point cloud 
- out_path_labels – out class labels 
- out_path_probs – out class probabilities 
- k – number of neighbors 
- max_distance – maximum distance 
- to_points_names – names of points to be labeled 
- from_point_names – names of reference points 
- from_class_name – name of reference classification 
- instance_type – type of cloud instance used for processing