Knn classification

operators.ml3d.knn_classification(client, in_path_to_points='new.laz', in_path_from_points='old.laz', out_path_labels='out.labels', out_path_probs='out.npy', k=3, max_distance=1.0, to_points_names='X,Y,Z', from_point_names='X,Y,Z', from_class_name='classification', instance_type='x2large')

knn_classification( client,
in_path_to_points=’new.laz’,
in_path_from_points=’old.laz’,
out_path_labels=’out.labels’,
out_path_probs=’out.npy’,
k=3,
max_distance=1.0,
to_points_names=’X,Y,Z’,
from_point_names=’X,Y,Z’,
from_class_name=’classification’,
instance_type=’x2large’ )
Parameters:
  • in_path_to_points – input point cloud to be labeled

  • in_path_from_points – input reference point cloud

  • out_path_labels – out class labels

  • out_path_probs – out class probabilities

  • k – number of neighbors

  • max_distance – maximum distance

  • to_points_names – names of points to be labeled

  • from_point_names – names of reference points

  • from_class_name – name of reference classification

  • instance_type – type of cloud instance used for processing