Knn classification
- operators.ml3d.knn_classification(client, in_path_to_points='new.laz', in_path_from_points='old.laz', out_path_labels='out.labels', out_path_probs='out.npy', k=3, max_distance=1.0, to_points_names='X,Y,Z', from_point_names='X,Y,Z', from_class_name='classification', instance_type='x2large')
- knn_classification( client,in_path_to_points=’new.laz’,in_path_from_points=’old.laz’,out_path_labels=’out.labels’,out_path_probs=’out.npy’,k=3,max_distance=1.0,to_points_names=’X,Y,Z’,from_point_names=’X,Y,Z’,from_class_name=’classification’,instance_type=’x2large’ )
- Parameters:
in_path_to_points – input point cloud to be labeled
in_path_from_points – input reference point cloud
out_path_labels – out class labels
out_path_probs – out class probabilities
k – number of neighbors
max_distance – maximum distance
to_points_names – names of points to be labeled
from_point_names – names of reference points
from_class_name – name of reference classification
instance_type – type of cloud instance used for processing