Semantic inference rfcr
- operators.ml3d.semantic_inference_rfcr(client, data_in_path='data.laz', results_labels_path='result_labels.labels', results_probabilities_path='result_probabilities.npy', in_model_parameters_path='results/Log_2022-11-10_11-42-05', number_of_votes=5, feature_names='red,green,blue', point_names='x,y,z', instance_type='x2large')
- semantic_inference_rfcr( client,data_in_path=’data.laz’,results_labels_path=’result_labels.labels’,results_probabilities_path=’result_probabilities.npy’,in_model_parameters_path=’results/Log_2022-11-10_11-42-05’,number_of_votes=5,feature_names=’red,green,blue’,point_names=’x,y,z’,instance_type=’x2large’ )
- Parameters:
data_in_path – path to data
results_labels_path – path to labels
results_probabilities_path – path to probabilities
in_model_parameters_path – path to model
number_of_votes – number of votes to vote for a class
feature_names – comma separated list of features that are provided
point_names – comma separated list of point identifiers in (las/laz)
instance_type – type of cloud instance used for processing