Semantic inference rfcr

operators.ml3d.semantic_inference_rfcr(client, data_in_path='data.laz', results_labels_path='result_labels.labels', results_probabilities_path='result_probabilities.npy', in_model_parameters_path='results/Log_2022-11-10_11-42-05', number_of_votes=5, feature_names='red,green,blue', point_names='x,y,z', instance_type='x2large')

semantic_inference_rfcr( client,
data_in_path=’data.laz’,
results_labels_path=’result_labels.labels’,
results_probabilities_path=’result_probabilities.npy’,
in_model_parameters_path=’results/Log_2022-11-10_11-42-05’,
number_of_votes=5,
feature_names=’red,green,blue’,
point_names=’x,y,z’,
instance_type=’x2large’ )
Parameters:
  • data_in_path – path to data

  • results_labels_path – path to labels

  • results_probabilities_path – path to probabilities

  • in_model_parameters_path – path to model

  • number_of_votes – number of votes to vote for a class

  • feature_names – comma separated list of features that are provided

  • point_names – comma separated list of point identifiers in (las/laz)

  • instance_type – type of cloud instance used for processing