Point cloud classification inference folder

operators.tdp.point_cloud_classification_inference_folder(client, folder_in='/folder_in', folder_out='/folder_out', model_path='network_parameters', cols_data='X,Y,Z', cols_labels='classification', worker_instance_type='P2', manager_instance_type='small', extension_file_in='.laz', extension_file_out='.labels', skip_existing_files=False)

point_cloud_classification_inference_folder(client,
folder_in=’/folder_in’,
folder_out=’/folder_out’,
model_path=’network_parameters’,
cols_data=’X,Y,Z’,
cols_labels=’classification’,
worker_instance_type=’P2’,
manager_instance_type=”small”,
extension_folder_in=”.laz”,
extension_folder_out=”.labels”,
skip_existing_files = False )
Parameters:
  • model_path – path to model

  • cols_data – attributes used

  • cols_labels – label name

  • folder_in – input folder

  • folder_out – results folder

  • worker_instance_type – cloud instance type of worker nodes

  • manager_instance_type – cloud instance type of manager node

  • extension_folder_in – File extension of files in folder for folder_in

  • extension_folder_out – File extension of files in folder for folder_out

  • skip_existing_files – skip files that already exist in the output folder