Semantic training scf

operators.ml3d.semantic_training_scf(client, data_in_path='/data/files/', out_model_parameters_path='trained_model/model_1', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='x,y,z', label_name='classification', max_epochs=500, learning_rate=0.01, learning_rate_decay=0.95, feature_dimensions='16,64,128,256,512', batch_size=2, instance_type='x2large')

semantic_training_scf( client,
data_in_path=’/data/files/’,
out_model_parameters_path=’trained_model/model_1’,
class_names=’1,2,3,4,5,6,7,8’,
feature_names=’red,green,blue’,
point_names=’x,y,z’,
label_name=’classification’,
max_epochs=500,
learning_rate=1e-2,
learning_rate_decay=0.95,
feature_dimensions=’16,64,128,256,512’,
batch_size=2,
instance_type=’x2large’ )
Parameters:
  • data_in_path – path to folder that contains the training data

  • out_model_parameters_path – path to model

  • class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points.

  • feature_names – comma separated list of features that are provided

  • point_names – comma separated list of point identifiers in (las/laz)

  • label_name – label name for (las/laz)

  • max_epochs – maximum number of epochs

  • learning_rate – learning rate

  • learning_rate_decay – learning rate decay

  • feature_dimensions – feature dimensions

  • batch_size – batch_size

  • instance_type – type of cloud instance used for processing