Canny edge detection folder

operators.image.canny_edge_detection_folder(client, input_folder='/input_folder', output_folder='/output_folder', sigma=1.0, low_threshold=0.1, high_threshold=0.2, values_subset='', worker_instance_type='x2large', manager_instance_type='small', extension_input_file='.tif', extension_output_file='.tif', skip_existing_files=False)
Perform Canny edge detection on a georeferenced image and save the detected edges as a raster.

canny_edge_detection_folder(client,
input_folder=’/input_folder’,
output_folder=’/output_folder’,
sigma=1.0,
low_threshold=0.1,
high_threshold=0.2,
values_subset=’’,
worker_instance_type=’x2large’,
manager_instance_type=”small”,
extension_input_folder=”.tif”,
extension_output_folder=”.tif”,
skip_existing_files = False )
Parameters:
  • sigma – Standard deviation of the Gaussian filter

  • low_threshold – Low threshold for hysteresis

  • high_threshold – High threshold for hysteresis

  • values_subset – Subset of values to extract contours from, all values by default

  • input_folder – Input image folder

  • output_folder – Output edge raster folder

  • worker_instance_type – cloud instance type of worker nodes

  • manager_instance_type – cloud instance type of manager node

  • extension_input_folder – File extension of files in folder for input_folder

  • extension_output_folder – File extension of files in folder for output_folder

  • skip_existing_files – skip files that already exist in the output folder