Semantic training rfcr

operators.ml3d.semantic_training_rfcr(client, data_in_path='/data/files/', out_model_parameters_path='trained_model/model_1', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='x,y,z', label_name='classification', resolution=0.06, max_epochs=500, learning_rate=0.01, batch_size=10, learning_rate_decay=0.1, learning_momentum=0.98, learning_gradient_clip_norm=100, first_features_dim=128, instance_type='x2large')

semantic_training_rfcr( client,
data_in_path=’/data/files/’,
out_model_parameters_path=’trained_model/model_1’,
class_names=’1,2,3,4,5,6,7,8’,
feature_names=’red,green,blue’,
point_names=’x,y,z’,
label_name=’classification’,
resolution=0.06,
max_epochs=500,
learning_rate=0.01,
batch_size=10,
learning_rate_decay=0.1,
learning_momentum=0.98,
learning_gradient_clip_norm=100,
first_features_dim=128,
instance_type=’x2large’ )
Parameters:
  • data_in_path – path to folder that contains the training data

  • out_model_parameters_path – path to model

  • class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points.

  • feature_names – comma separated list of features that are provided

  • point_names – comma separated list of point identifiers in (las/laz)

  • label_name – label name for (las/laz)

  • resolution – resolution of the subsampled point cloud

  • max_epochs – maximum number of epochs

  • learning_rate – learning rate

  • batch_size – batch size

  • learning_rate_decay – learning rate decay

  • learning_momentum – learning momentum

  • learning_gradient_clip_norm – learning gradient clip threshold

  • first_features_dim – first features dimension

  • instance_type – type of cloud instance used for processing