Semantic training scf folder
- operators.ml3d.semantic_training_scf_folder(client, data_in_folder='/data_in_folder', out_model_parameters_path='trained_model/model_1', class_names='1,2,3,4,5,6,7,8', feature_names='red,green,blue', point_names='x,y,z', label_name='classification', max_epochs=500, learning_rate=0.01, learning_rate_decay=0.95, feature_dimensions='16,64,128,256,512', batch_size=2, worker_instance_type='x2large', manager_instance_type='small', extension_data_in_path='.laz', skip_existing_files=False)
- semantic_training_scf_folder(client,data_in_folder=’/data_in_folder’,out_model_parameters_path=’trained_model/model_1’,class_names=’1,2,3,4,5,6,7,8’,feature_names=’red,green,blue’,point_names=’x,y,z’,label_name=’classification’,max_epochs=500,learning_rate=1e-2,learning_rate_decay=0.95,feature_dimensions=’16,64,128,256,512’,batch_size=2,worker_instance_type=’x2large’,manager_instance_type=”small”,extension_data_in_folder=”./data/files/”,skip_existing_files = False )- Parameters:
- out_model_parameters_path – path to model 
- class_names – comma separated list of class names. Class 0 is always given and is used to denote unlabeled points. 
- feature_names – comma separated list of features that are provided 
- point_names – comma separated list of point identifiers in (las/laz) 
- label_name – label name for (las/laz) 
- max_epochs – maximum number of epochs 
- learning_rate – learning rate 
- learning_rate_decay – learning rate decay 
- feature_dimensions – feature dimensions 
- batch_size – batch_size 
- data_in_folder – folder to folder that contains the training data 
- worker_instance_type – cloud instance type of worker nodes 
- manager_instance_type – cloud instance type of manager node 
- extension_data_in_folder – File extension of files in folder for data_in_folder 
- skip_existing_files – skip files that already exist in the output folder