Universal training
- operators.ml3d.universal_training(client, in_folder='data_train', out_model_path='parameters_model_test', voxel_size=0.02, zero_centering='True', point_names='X,Y,Z', feature_names='', label_names='classification', num_classes=1, label_scales='0.01', learning_rate=3e-06, learning_decay=0.9999, num_epochs=200000, regularization_decay=1e-09, batch_size=2, save_after_epochs=100, backbone_type='MinkUNet14A', head_type='HeadPointwise', criterion_type='L1Sum', probabilistic='True', hidden_layers=8, store_in_memory='True', instance_type='x2large')
- universal_training( client,in_folder=’data_train’,out_model_path=’parameters_model_test’,voxel_size=0.02,zero_centering=’True’,point_names=’X,Y,Z’,feature_names=’’,label_names=’classification’,num_classes=1,label_scales=’0.01’,learning_rate=3e-6,learning_decay=0.9999,num_epochs=200000,regularization_decay=1e-9,batch_size=2,save_after_epochs=100,backbone_type=’MinkUNet14A’,head_type=’HeadPointwise’,criterion_type=’L1Sum’,probabilistic=’True’,hidden_layers=8,store_in_memory=’True’,instance_type=’x2large’ )- Parameters:
- in_folder – input directory with training data 
- out_model_path – model path 
- voxel_size – voxel size 
- zero_centering – zero centering 
- point_names – point names 
- feature_names – feature names 
- label_names – label names 
- num_classes – number of classes 
- label_scales – label scales 
- learning_rate – learning rate 
- learning_decay – learning rate decay 
- num_epochs – number of epochs 
- regularization_decay – regularization decay 
- batch_size – batch size for training 
- save_after_epochs – save after epochs 
- backbone_type – model type of backbone network 
- head_type – model type of head network 
- criterion_type – model type of criterion 
- probabilistic – estimate probabilities: labels in [0,1] 
- hidden_layers – number of hidden layers 
- store_in_memory – store training data in memory 
- instance_type – type of cloud instance used for processing