Universal training
- operators.ml3d.universal_training(client, in_folder='data_train', out_model_path='parameters_model_test', voxel_size=0.02, zero_centering='True', point_names='X,Y,Z', feature_names='', label_names='classification', num_classes=1, label_scales='0.01', learning_rate=3e-06, learning_decay=0.9999, num_epochs=200000, regularization_decay=1e-09, batch_size=2, save_after_epochs=100, backbone_type='MinkUNet14A', head_type='HeadPointwise', criterion_type='L1Sum', probabilistic='True', hidden_layers=8, store_in_memory='True', instance_type='x2large')
- universal_training( client,in_folder=’data_train’,out_model_path=’parameters_model_test’,voxel_size=0.02,zero_centering=’True’,point_names=’X,Y,Z’,feature_names=’’,label_names=’classification’,num_classes=1,label_scales=’0.01’,learning_rate=3e-6,learning_decay=0.9999,num_epochs=200000,regularization_decay=1e-9,batch_size=2,save_after_epochs=100,backbone_type=’MinkUNet14A’,head_type=’HeadPointwise’,criterion_type=’L1Sum’,probabilistic=’True’,hidden_layers=8,store_in_memory=’True’,instance_type=’x2large’ )
- Parameters:
in_folder – input directory with training data
out_model_path – model path
voxel_size – voxel size
zero_centering – zero centering
point_names – point names
feature_names – feature names
label_names – label names
num_classes – number of classes
label_scales – label scales
learning_rate – learning rate
learning_decay – learning rate decay
num_epochs – number of epochs
regularization_decay – regularization decay
batch_size – batch size for training
save_after_epochs – save after epochs
backbone_type – model type of backbone network
head_type – model type of head network
criterion_type – model type of criterion
probabilistic – estimate probabilities: labels in [0,1]
hidden_layers – number of hidden layers
store_in_memory – store training data in memory
instance_type – type of cloud instance used for processing