Vertices estimation training
- operators.ml3d.vertices_estimation_training(client, in_folder='data_train', in_vertices_folder='data_train_vertices', out_model_path='parameters_model_test', voxel_size=0.02, zero_centering='True', point_names='X,Y,Z', feature_names='', label_names='classification', num_classes=1, label_scales='0.01', learning_rate=1e-05, learning_decay=0.999, num_epochs=2000000, regularization_decay=1e-09, batch_size=5, save_after_epochs=100, backbone_type='MinkUNet14A', head_type_prob='HeadPointwise', criterion_type_prob='BCEMean', hidden_layers=8, max_interpolation_distance=0.75, dist_threshold=0.35, score_threshold=0.4, point_estimation_layers=3, point_estimation_channels=8, criterion_type_point='L1Mean', weight_pred=1.0, weight_prob=2.0, weight_reconstruction=4.0, probabilistic='True', instance_type='x2large')
- vertices_estimation_training( client,in_folder=’data_train’,in_vertices_folder=’data_train_vertices’,out_model_path=’parameters_model_test’,voxel_size=0.02,zero_centering=’True’,point_names=’X,Y,Z’,feature_names=’’,label_names=’classification’,num_classes=1,label_scales=’0.01’,learning_rate=1e-5,learning_decay=0.999,num_epochs=2000000,regularization_decay=1e-9,batch_size=5 ,save_after_epochs=100,backbone_type=’MinkUNet14A’,head_type_prob=’HeadPointwise’,criterion_type_prob=’BCEMean’,hidden_layers=8,max_interpolation_distance=0.75,dist_threshold=0.35,score_threshold=0.4,point_estimation_layers=3,point_estimation_channels=8,criterion_type_point=’L1Mean’,weight_pred=1.0,weight_prob=2.0,weight_reconstruction=4.0,probabilistic=’True’,instance_type=’x2large’ )
- Parameters:
in_folder – input directory with training data
in_vertices_folder – input directory with corresponding vertex data
out_model_path – model path
voxel_size – voxel size
zero_centering – zero centering
point_names – point names
feature_names – feature names
label_names – label names
num_classes – number of classes
label_scales – label scales
learning_rate – learning rate
learning_decay – learning rate decay
num_epochs – number of epochs
regularization_decay – regularization decay
batch_size – batch size for training
save_after_epochs – save after epochs
backbone_type – model type of backbone network
head_type_prob – model type of head network
criterion_type_prob – model type of criterion
hidden_layers – number of hidden layers
max_interpolation_distance – maximum distance to interpolate occluded points
dist_threshold – distance threshold for non-maximum suppression
score_threshold – score threshold for non-maximum suppression
point_estimation_layers – number of hidden layers for point estimation
point_estimation_channels – number of channels for point estimation
criterion_type_point – model type of criterion for point estimation
weight_pred – weight for point estimation
weight_prob – weight for probability estimation
weight_reconstruction – weight for reconstruction estimation
probabilistic – probabilistic
instance_type – type of cloud instance used for processing