Wireframe estimation training folder
- operators.ml3d.wireframe_estimation_training_folder(client, folder_in_folder='/folder_in_folder', folder_in_wireframe_folder='/folder_in_wireframe_folder', out_model_path='parameters_wireframe_14A_bce_interpolation', voxel_size=0.02, zero_centering='True', point_names='X,Y,Z', feature_names='', label_names='classification', num_classes=1, label_scales='0.01', learning_rate=5e-06, learning_decay=0.999, num_epochs=2000000, regularization_decay=1e-10, batch_size=5, save_after_epochs=1, backbone_type='MinkUNet14A', head_type_prob='HeadPointwise', criterion_type_prob='BCEMean', hidden_layers=8, max_interpolation_distance=0.75, dist_threshold=0.35, score_threshold=0.5, point_estimation_layers=3, point_estimation_channels=32, criterion_type_point='L1Mean', wireframe_criterion_type='BCEMean', wireframe_estimation_layers=3, wireframe_estimation_channels=32, weight_pred=2, weight_prob=6.5, weight_reconstruction=4.5, weight_wireframe=9, knn_line=10, distance_line=0.3, probabilistic='True', store_in_memory='True', mode_wireframe_estimation='knn', maximum_wireframe_samples=2500, wireframe_subsampling=5, wireframe_extrapolation_sampling=2, only_train_wireframe='False', worker_instance_type='x2large', manager_instance_type='small', extension_in_folder='.laz', extension_in_wireframe_folder='.laz', skip_existing_files=False)
- [hidden] wireframe estimation training
- wireframe_estimation_training_folder(client,in_folder=’/in_folder’,in_wireframe_folder=’/in_wireframe_folder’,out_model_path=’parameters_wireframe_14A_bce_interpolation’,voxel_size=0.02,zero_centering=’True’,point_names=’X,Y,Z’,feature_names=’’,label_names=’classification’,num_classes=1,label_scales=’0.01’,learning_rate=5e-6,learning_decay=0.999,num_epochs=2000000,regularization_decay=1e-10,batch_size=5 ,save_after_epochs=1,backbone_type=’MinkUNet14A’,head_type_prob=’HeadPointwise’,criterion_type_prob=’BCEMean’,hidden_layers=8,max_interpolation_distance=0.75,dist_threshold=0.35,score_threshold=0.5,point_estimation_layers=3,point_estimation_channels=32,criterion_type_point=’L1Mean’,wireframe_criterion_type=’BCEMean’,wireframe_estimation_layers=3,wireframe_estimation_channels=32,weight_pred=2,weight_prob=6.5,weight_reconstruction=4.5,weight_wireframe=9,knn_line=10,distance_line=0.3,probabilistic=’True’,store_in_memory=’True’,mode_wireframe_estimation=’knn’,maximum_wireframe_samples=2500,wireframe_subsampling=5,wireframe_extrapolation_sampling=2,only_train_wireframe=’False’,worker_instance_type=’x2large’,manager_instance_type=”small”,extension_in_folder=”.data_train”,extension_in_wireframe_folder=”.data_train_wireframe”,skip_existing_files = False )
 - Parameters:
- out_model_path – model path 
- voxel_size – voxel size 
- zero_centering – zero centering 
- point_names – point names 
- feature_names – feature names 
- label_names – label names 
- num_classes – number of classes 
- label_scales – label scales 
- learning_rate – learning rate 
- learning_decay – learning rate decay 
- num_epochs – number of epochs 
- regularization_decay – regularization decay 
- batch_size – batch size for training 
- save_after_epochs – save after epochs 
- backbone_type – model type of backbone network 
- head_type_prob – model type of head network 
- criterion_type_prob – model type of criterion 
- hidden_layers – number of hidden layers 
- max_interpolation_distance – maximum distance to interpolate occluded points 
- dist_threshold – distance threshold for non-maxima suppression 
- score_threshold – score threshold for non-maxima suppression 
- point_estimation_layers – number of hidden layers for point estimation 
- point_estimation_channels – number of channels for point estimation 
- criterion_type_point – model type of criterion for point estimation 
- wireframe_criterion_type – model type of criterion for wireframe estimation 
- wireframe_estimation_layers – number of hidden layers for wireframe estimation 
- wireframe_estimation_channels – number of channels for wireframe estimation 
- weight_pred – weight for point estimation 
- weight_prob – weight for probability estimation 
- weight_reconstruction – weight for reconstruction 
- weight_wireframe – weight for wireframe estimation 
- knn_line – number of nearest neighbours for line estimation 
- distance_line – distance threshold for line estimation 
- probabilistic – probabilistic 
- store_in_memory – store in memory 
- mode_wireframe_estimation – wireframe mode 
- maximum_wireframe_samples – maximum number of wireframe samples 
- wireframe_subsampling – wireframe subsampling factor 
- wireframe_extrapolation_sampling – wireframe extrapolation sampling factor 
- only_train_wireframe – only train wireframe 
- folder_in_folder – input directory with training data 
- folder_in_wireframe_folder – input directory with corresponding wireframe data 
- worker_instance_type – cloud instance type of worker nodes 
- manager_instance_type – cloud instance type of manager node 
- extension_in_folder – File extension of files in folder for folder_in_folder 
- extension_in_wireframe_folder – File extension of files in folder for folder_in_wireframe_folder 
- skip_existing_files – skip files that already exist in the output folder