Wireframe estimation training folder
- operators.ml3d.wireframe_estimation_training_folder(client, folder_in_folder='/folder_in_folder', folder_in_wireframe_folder='/folder_in_wireframe_folder', out_model_path='parameters_wireframe_14A_bce_interpolation', voxel_size=0.02, zero_centering='True', point_names='X,Y,Z', feature_names='', label_names='classification', num_classes=1, label_scales='0.01', learning_rate=5e-06, learning_decay=0.999, num_epochs=2000000, regularization_decay=1e-10, batch_size=5, save_after_epochs=1, backbone_type='MinkUNet14A', head_type_prob='HeadPointwise', criterion_type_prob='BCEMean', hidden_layers=8, max_interpolation_distance=0.75, dist_threshold=0.35, score_threshold=0.5, point_estimation_layers=3, point_estimation_channels=32, criterion_type_point='L1Mean', wireframe_criterion_type='BCEMean', wireframe_estimation_layers=3, wireframe_estimation_channels=32, weight_pred=2, weight_prob=6.5, weight_reconstruction=4.5, weight_wireframe=9, knn_line=10, distance_line=0.3, probabilistic='True', store_in_memory='True', mode_wireframe_estimation='knn', maximum_wireframe_samples=2500, wireframe_subsampling=5, wireframe_extrapolation_sampling=2, only_train_wireframe='False', worker_instance_type='x2large', manager_instance_type='small', extension_in_folder='.laz', extension_in_wireframe_folder='.laz', skip_existing_files=False)
- [hidden] wireframe estimation training
- wireframe_estimation_training_folder(client,in_folder=’/in_folder’,in_wireframe_folder=’/in_wireframe_folder’,out_model_path=’parameters_wireframe_14A_bce_interpolation’,voxel_size=0.02,zero_centering=’True’,point_names=’X,Y,Z’,feature_names=’’,label_names=’classification’,num_classes=1,label_scales=’0.01’,learning_rate=5e-6,learning_decay=0.999,num_epochs=2000000,regularization_decay=1e-10,batch_size=5 ,save_after_epochs=1,backbone_type=’MinkUNet14A’,head_type_prob=’HeadPointwise’,criterion_type_prob=’BCEMean’,hidden_layers=8,max_interpolation_distance=0.75,dist_threshold=0.35,score_threshold=0.5,point_estimation_layers=3,point_estimation_channels=32,criterion_type_point=’L1Mean’,wireframe_criterion_type=’BCEMean’,wireframe_estimation_layers=3,wireframe_estimation_channels=32,weight_pred=2,weight_prob=6.5,weight_reconstruction=4.5,weight_wireframe=9,knn_line=10,distance_line=0.3,probabilistic=’True’,store_in_memory=’True’,mode_wireframe_estimation=’knn’,maximum_wireframe_samples=2500,wireframe_subsampling=5,wireframe_extrapolation_sampling=2,only_train_wireframe=’False’,worker_instance_type=’x2large’,manager_instance_type=”small”,extension_in_folder=”.data_train”,extension_in_wireframe_folder=”.data_train_wireframe”,skip_existing_files = False )
- Parameters:
out_model_path – model path
voxel_size – voxel size
zero_centering – zero centering
point_names – point names
feature_names – feature names
label_names – label names
num_classes – number of classes
label_scales – label scales
learning_rate – learning rate
learning_decay – learning rate decay
num_epochs – number of epochs
regularization_decay – regularization decay
batch_size – batch size for training
save_after_epochs – save after epochs
backbone_type – model type of backbone network
head_type_prob – model type of head network
criterion_type_prob – model type of criterion
hidden_layers – number of hidden layers
max_interpolation_distance – maximum distance to interpolate occluded points
dist_threshold – distance threshold for non-maxima suppression
score_threshold – score threshold for non-maxima suppression
point_estimation_layers – number of hidden layers for point estimation
point_estimation_channels – number of channels for point estimation
criterion_type_point – model type of criterion for point estimation
wireframe_criterion_type – model type of criterion for wireframe estimation
wireframe_estimation_layers – number of hidden layers for wireframe estimation
wireframe_estimation_channels – number of channels for wireframe estimation
weight_pred – weight for point estimation
weight_prob – weight for probability estimation
weight_reconstruction – weight for reconstruction
weight_wireframe – weight for wireframe estimation
knn_line – number of nearest neighbours for line estimation
distance_line – distance threshold for line estimation
probabilistic – probabilistic
store_in_memory – store in memory
mode_wireframe_estimation – wireframe mode
maximum_wireframe_samples – maximum number of wireframe samples
wireframe_subsampling – wireframe subsampling factor
wireframe_extrapolation_sampling – wireframe extrapolation sampling factor
only_train_wireframe – only train wireframe
folder_in_folder – input directory with training data
folder_in_wireframe_folder – input directory with corresponding wireframe data
worker_instance_type – cloud instance type of worker nodes
manager_instance_type – cloud instance type of manager node
extension_in_folder – File extension of files in folder for folder_in_folder
extension_in_wireframe_folder – File extension of files in folder for folder_in_wireframe_folder
skip_existing_files – skip files that already exist in the output folder